A rigorous methodology is developed that addresses numerical and statistical issues when developing group contribution (GC) based property models such as regression methods, optimization algorithms, performance statistics, outlier treatment, parameter identifiability, and uncertainty of the prediction. The methodology is evaluated through development of a GC method for the prediction of the heat of combustion (ΔH_{co}) for pure components. The results showed that robust regression lead to best performance statistics for parameter estimation. The bootstrap method is found to be a valid alternative to calculate parameter estimation errors when underlying distribution of residuals is unknown. Many parameters (first, second, third order group contributions) are found unidentifiable from the typically available data, with large estimation error bounds and significant correlation. Due to this poor parameter identifiability issues, reporting of the 95% confidence intervals of the predicted property values should be mandatory as opposed to reporting only single value prediction, currently the norm in literature. Moreover, inclusion of higher order groups (additional parameters) does not always lead to improved prediction accuracy for the GC-models; in some cases, it may even increase the prediction error (hence worse prediction accuracy). However, additional parameters do not affect calculated 95% confidence interval. Last but not least, the newly developed GC model of the heat of combustion (ΔH_{co}) shows predictions of great accuracy and quality (the most data falling within the 95% confidence intervals) and provides additional information on the uncertainty of each prediction compared to other ΔH_{co} models reported in literature.

General information

State: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, Technical University of Denmark
Contributors: Frutiger, J., Marcarie, C., Abildskov, J., Sin, G.
Pages: 602-613
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Chemical and Engineering Data
Volume: 61
Issue number: 1
ISSN (Print): 0021-9568
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.33 SJR 0.925 SNIP 1.116
Web of Science (2017): Impact factor 2.196
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.29 SJR 0.866 SNIP 1.103
Web of Science (2016): Impact factor 2.323
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.96 SJR 0.857 SNIP 0.954
Web of Science (2015): Impact factor 1.835
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.22 SJR 1.015 SNIP 1.196
Web of Science (2014): Impact factor 2.037
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.17 SJR 1.131 SNIP 1.196
Web of Science (2013): Impact factor 2.045
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.01 SJR 1.139 SNIP 1.102
Web of Science (2012): Impact factor 2.004
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.8 SJR 0.858 SNIP 0.977
Web of Science (2011): Impact factor 1.693
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.055 SNIP 1.298
Web of Science (2010): Impact factor 2.089
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.308 SNIP 1.031
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.505 SNIP 1.19
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.259 SNIP 1.244
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.139 SNIP 1.317
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.17 SNIP 1.331
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.906 SNIP 1.211
Scopus rating (2003): SJR 1.048 SNIP 1.152
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.716 SNIP 1.041
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.974 SNIP 1.241
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.906 SNIP 1.139
Scopus rating (1999): SJR 0.851 SNIP 1.242

Original language: English
Electronic versions:
DOIs:
10.1021/acs.jced.5b00750
Research output: Research - peer-review › Journal article – Annual report year: 2015