A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

Information on oxygen permeability through polymer films is essential for some applications, especially in food packaging where the control of oxygen levels can be critical in avoiding food spoilage. A permeability testing device using fluorescence-based optical oxygen sensing was developed as a potential new instrument for measuring the oxygen permeability of packaging films. The fluorescence-based permeability tester was validated against two existing commercial oxygen permeability measuring devices, the Mocon Ox-Tran 2/20 and PBI-Dansensor OPT-5000. Oxygen transmission rates (OTR) of polylactide (PLA) and nanoclay-reinforced PLA films, as well as polyethylene/poly(ethylene terephthalate) (PE/PET) and polypropylene/poly(ethylene terephthalate) (PP/PET) laminated films were determined at 23°C and 50% relative humidity using each of these instruments. No significant differences were observed between mean OTR values obtained by the fluorescence method and the corresponding values obtained using the OPT-5000 but significantly lower values were measured when using the Mocon Ox-Tran 2/20. In general, oxygen permeability data for the tested films were within the range of values found in the literature; however, in terms of further development, the fluorescence-based technique gave OTR with relatively high standard deviation compared to the commercial methods and equipment modifications to address this issue are considered desirable. Copyright © 2010 John Wiley & Sons, Ltd.
Original languageEnglish
JournalPackaging Technology and Science
Publication date2010
Volume23
Issue6
Pages301-315
ISSN0894-3214
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 7

Keywords

  • Biopolymers, Solar energy
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4956399