A compact microelectrode array chip with multiple measuring sites for electrochemical applications - DTU Orbit (31/03/2019)

In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in close proximity. The electrodes are made of gold on a silicon oxide substrate and are passivated by a silicon nitride membrane. A method for avoiding the creation of high edges at the electrodes (known as lift-off ears) is presented. The microchip design is highly symmetric to accommodate easy electronic integration and provides space for microfluidic inlets and outlets for integrated custom-made microfluidic systems on top. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nano Bio Integrated Systems, Bioanalytics, University of Canterbury, Polytechnic University of Milan
Number of pages: 17
Pages: 9505-9521
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Sensors
Volume: 14
Issue number: 6
ISSN (Print): 1424-8220
Ratings:
 BFI (2019): BFI-level 2
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 3.23 SJR 0.584 SNIP 1.55
 Web of Science (2017): Impact factor 2.475
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 2.78 SJR 0.623 SNIP 1.614
 Web of Science (2016): Impact factor 2.677
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 2
 Scopus rating (2015): CiteScore 2.21 SJR 0.647 SNIP 1.643
 Web of Science (2015): Impact factor 2.033
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 2
 Scopus rating (2014): CiteScore 2.4 SJR 0.707 SNIP 1.796
 Web of Science (2014): Impact factor 2.245
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 2
 Scopus rating (2013): CiteScore 2.72 SJR 0.636 SNIP 1.758
 Web of Science (2013): Impact factor 2.048
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 2
 Scopus rating (2012): CiteScore 2.53 SJR 0.671 SNIP 1.709
 Web of Science (2012): Impact factor 1.953
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes