In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in close proximity. The electrodes are made of gold on a silicon oxide substrate and are passivated by a silicon nitride membrane. A method for avoiding the creation of high edges at the electrodes (known as lift-off ears) is presented. The microchip design is highly symmetric to accommodate easy electronic integration and provides space for microfluidic inlets and outlets for integrated custom-made microfluidic systems on top. © 2014 by the authors; licensee MDPI, Basel, Switzerland.
Web of Science (2011): Impact factor 1.739
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.579 SNIP 1.244
Web of Science (2010): Impact factor 1.774
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.526 SNIP 1.092
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.516 SNIP 0.887
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.516 SNIP 0.942
Scopus rating (2006): SJR 0.512 SNIP 0.768
Scopus rating (2005): SJR 0.388 SNIP 0.872
Scopus rating (2004): SJR 0.56 SNIP 0.882
Scopus rating (2003): SJR 0.381 SNIP 1.168
Scopus rating (2002): SJR 0.261 SNIP 0.159
Original language: English
Keywords: Microfabrication, Lift-off ears, Electrochemical applications, Multiple measuring sites
Electronic versions:
Dimaki_et_al._Sensors_Excell_electrodes.pdf
DOIs:
10.3390/s140609505

Bibliographical note
Creative Commons Attribution Licence
Source: FindIt
Source-ID: 267793206
Research output: Research - peer-review › Journal article – Annual report year: 2014