A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.77 SJR 1.074 SNIP 0.697
Web of Science (2011): Impact factor 1.895
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.064 SNIP 0.863
Web of Science (2010): Impact factor 1.626
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.592 SNIP 0.809
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.817 SNIP 0.868
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.649 SNIP 0.949
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.272 SNIP 0.688
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.397 SNIP 0.758
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.338 SNIP 0.682
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.656 SNIP 0.744
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.652 SNIP 0.691
Scopus rating (2001): SJR 2.563 SNIP 0.947
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.572 SNIP 0.976
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.532 SNIP 0.911
Original language: English
Keywords: Hybrid promoter, Saccharomyces, Strain engineering, Synthetic biology
Electronic versions: Dossani_et_al_2018_Yeast.pdf
DOIs: 10.1002/yea.3292

Bibliographical note
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made
Source: FindIt
Source-ID: 2392700052
Research output: Research - peer-review › Journal article – Annual report year: 2018