A Combination of Machine Learning and Cerebellar-like Neural Networks for the Motor Control and Motor Learning of the Fable Modular Robot

We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, in the form of a Unit Learning Machine. The LWPR algorithm optimizes the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar-like microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar-like circuits including analytical models and spiking models implemented on the SpiNNaker platform, showing promising performance and robustness results.

General information
State: Published
Organisations: Department of Electrical Engineering, Automation and Control, Centre for Playware, Copenhagen Center for Health Technology
Authors: Baira Ojeda, I. (Intern), Tolu, S. (Intern), Pacheco, M. (Intern), Christensen, D. J. (Intern), Lund, H. H. (Intern)
Pages: 62–66
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Robotics Networks and Artificial Life
Volume: 4
Issue number: 1
Ratings:
Web of Science (2018): Indexed yes
Web of Science (2017): Indexed yes
Original language: English
Motor control, Cerebellum, Machine learning, Modular robot, Internal model, Adaptive behavior
Electronic versions:
jrnal_4_1_62_66.pdf
Source: PublicationPreSubmission
Source-ID: 134007460
Publication: Research - peer-review › Journal article – Annual report year: 2017