A CFD based automatic method for compartment model development - DTU Orbit
(15/03/2019)

A CFD based automatic method for compartment model development
Computational fluid dynamics (CFD) is a powerful tool for quantitative prediction of fluid dependent properties in a finite volume. However, the complexity of solving the momentum balances and the continuity equations at each element of the discretized geometry can easily lead to an expensive computational task. Compartment modelling is a potential alternative to speed up the calculation, which is however reached at the expense of the level of accuracy. The most important factor in optimizing a compartment model (CM) concerning the accuracy and the computational time is the quality of the chosen compartments to represent the critical gradients. This work presents a new automated compartmentalization method to characterize an improved network of compartments derived from initial detailed CFD results, with a focus on cylindrical-shaped systems. This method was evaluated with a case study of a 700L stirred tank bioreactor by estimating the mixing performance and demonstrating its high efficiency.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, PROSYS - Process and Systems Engineering Centre, KT Consortium, Novozymes AS
Pages: 236-245
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Computers and Chemical Engineering
Volume: 123
ISSN (Print): 0098-1354
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.65 SJR 1.024 SNIP 1.613
Web of Science (2017): Impact factor 3.113
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.39 SJR 1 SNIP 1.631
Web of Science (2016): Impact factor 3.024
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.04 SJR 1.108 SNIP 1.713
Web of Science (2015): Impact factor 2.581
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.22 SJR 1.168 SNIP 1.728
Web of Science (2014): Impact factor 2.784
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.06 SJR 1.21 SNIP 1.744
Web of Science (2013): Impact factor 2.452
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.05 SJR 1.138 SNIP 1.897
Web of Science (2012): Impact factor 2.091
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2