A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports - DTU Orbit (11/12/2018)

A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports

In this research, two crucial optimization problems of berth allocation and yard assignment in the context of bulk ports are studied. We discuss how these problems are interrelated and can be combined and solved as a single large scale optimization problem. More importantly we highlight the differences in operations between bulk ports and container terminals which highlights the need to devise specific solutions for bulk ports. The objective is to minimize the total service time of vessels berthing at the port. We propose an exact solution algorithm based on a branch and price framework to solve the integrated problem. In the proposed model, the master problem is formulated as a set-partitioning problem, and subproblems to identify columns with negative reduced costs are solved using mixed integer programming. To obtain sub-optimal solutions quickly, a metaheuristic approach based on critical-shaking neighborhood search is presented. The proposed algorithms are tested and validated through numerical experiments based on instances inspired from real bulk port data. The results indicate that the algorithms can be successfully used to solve instances containing up to 40 vessels within reasonable computational time.

General information
State: Published
Organisations: Department of Transport, Swiss Federal Institute of Technology Lausanne
Contributors: Robenek, T., Umang, N., Bierlaire, M., Røpke, S.
Pages: 399-411
Publication date: 1 Jun 2014
Peer-reviewed: Yes

Publication information
Journal: European Journal of Operational Research
Volume: 235
Issue number: 2
ISSN (Print): 0377-2217
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.08 SJR 2.437 SNIP 2.375
Web of Science (2017): Impact factor 3.428
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.83 SJR 2.489 SNIP 2.433
Web of Science (2016): Impact factor 3.297
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.59 SJR 2.225 SNIP 2.364
Web of Science (2015): Impact factor 2.679
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.21 SJR 2.143 SNIP 2.444
Web of Science (2014): Impact factor 2.358
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.25 SJR 2.238 SNIP 2.691
Web of Science (2013): Impact factor 1.843
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.01 SJR 2.328 SNIP 2.567
Web of Science (2012): Impact factor 2.038
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1