A biochemically structured model for ethanol fermentation by Kluyveromyces marxianus: A batch fermentation and kinetic study

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

Anaerobic batch fermentations of ricotta cheese whey (i.e. containing lactose) were performed under different operating conditions. Ethanol concentrations of ca. 22gL−1 were found from whey containing ca. 44gL−1 lactose, which corresponded to up to 95% of the theoretical ethanol yield within 15h. The experimental data could be explained by means of a simple knowledge-driven biochemically structured model that was built on bioenergetics principles applied to the metabolic pathways through which lactose is converted into major products. Use of the model showed that the observed concentrations of ethanol, lactose, biomass and glycerol during batch fermentation could be described within a ca. 6% deviation, as could the yield coefficients for biomass and ethanol produced on lactose. The model structure confirmed that the thermodynamics considerations on the stoichiometry of the system constrain the metabolic coefficients within a physically meaningful range thereby providing valuable and reliable insight into fermentation processes.
Original languageEnglish
JournalBioresource Technology
Publication date2011
Volume102
Issue16
Pages7513-7520
ISSN0960-8524
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 4

Keywords

  • Lactose, Metabolic pathways, Cheese whey, Biofuels, Modelling
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5632052