A bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks - DTU Orbit (01/04/2019)

A bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks

With the increasing digitization of the healthcare industry, a wide range of devices (including traditionally non-networked medical devices) are Internet- and inter-connected. Mobile devices (e.g. smartphones) are one common device used in the healthcare industry to improve the quality of service and experience for both patients and healthcare workers, and the underlying network architecture to support such devices is also referred to as medical smartphone networks (MSNs). MSNs, similar to other networks, are subject to a wide range of attacks (e.g. leakage of sensitive patient information by a malicious insider). In this work, we focus on MSNs and present a compact but efficient trust-based approach using Bayesian inference to identify malicious nodes in such an environment. We then demonstrate the effectiveness of our approach in detecting malicious nodes by evaluating the deployment of our proposed approach in a real-world environment with two healthcare organizations.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cyber Security, City University of Hong Kong, Deakin University, University of Texas at San Antonio
Contributors: Meng, W., Li, W., Xiang, Y., Choo, K. K. R.
Pages: 162-169
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Journal of Network and Computer Applications
Volume: 78
ISSN (Print): 1084-8045
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.13 SJR 0.784 SNIP 2.401
Web of Science (2017): Impact factor 3.991
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.42 SJR 0.728 SNIP 2.486
Web of Science (2016): Impact factor 3.5
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.98 SJR 0.775 SNIP 2.665
Web of Science (2015): Impact factor 2.331
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.82 SJR 0.878 SNIP 2.943
Web of Science (2014): Impact factor 2.229
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.21 SJR 0.69 SNIP 2.741
Web of Science (2013): Impact factor 1.772
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.48 SJR 0.537 SNIP 2.028
Web of Science (2012): Impact factor 1.467
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.97 SJR 0.438 SNIP 1.896
Web of Science (2011): Impact factor 1.065
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.388 SNIP 1.022
Web of Science (2010): Impact factor 0.66
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.414 SNIP 1.484