A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance

Recent advances in whole genome sequencing have made the technology available for routine use in microbiological laboratories. However, a major obstacle for using this technology is the availability of simple and automatic bioinformatics tools. Based on previously published and already available web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services. The reported results enable a rapid overview of the major results, and comparing that to the previously found results showed that the platform is reliable and able to correctly predict the species and find most of the expected genes automatically. In conclusion, a combined bioinformatics platform was developed and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 and it is the intention that it will continue to be expanded with new features as these become available.

General information
State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, National Food Institute, Research Group for Genomic Epidemiology
Authors: Thomsen, M. C. F. (Intern), Ahrenfeldt, J. (Intern), Bellod Cisneros, J. L. (Intern), Jurtz, V. I. (Intern), Larsen, M. V. (Intern), Hasman, H. (Intern), Aarestrup, F. M. (Intern), Lund, O. (Intern)
Number of pages: 14
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: P L o S One
Volume: 11
Issue number: 6
Article number: e0157718
ISSN (Print): 1932-6203
Ratings:
BFI (2017): BFI-level 1
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.395 SNIP 1.044
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.518 SNIP 1.107
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.722 SNIP 1.134
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.931 SNIP 1.13
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.351 SNIP 1.218
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.613 SNIP 1.154
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.453 SNIP 0.978
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.308 SNIP 0.957
Scopus rating (2007): SJR 1.285 SNIP 0.521
Original language: English
Electronic versions: