85 μm core rod fiber amplifier delivering 350 W/m - DTU Orbit (18/01/2019)

85 μm core rod fiber amplifier delivering 350 W/m

An improved version of the distributed modal filtering (DMF) rod fiber is tested in a high power setup delivering 350 W/m of extracted signal average power limited by the available pump power. The rod fiber is thoroughly tested to record the transverse modal instability (TMI) behavior and also measure degradation of the TMI threshold with operation time due to induced absorption in the active material increasing the thermo-optical heat load. Multiple testing degrades the rod fiber and TMI threshold from >360 W to a saturated power level of roughly 240 W.

General information
State: Published
Organisations: Department of Photonics Engineering, Fiber Optics, Devices and Non-linear Effects, Fiber Sensors & Supercontinuum, Department of Micro- and Nanotechnology, NKT Group
Contributors: Johansen, M. M., Michieletto, M., Kristensen, T., Alkeskjold, T. T., Lægsgaard, J.
Number of pages: 6
Publication date: 2016

Host publication information
Title of host publication: Proceedings of SPIE
Volume: 9728
Publisher: SPIE - International Society for Optical Engineering
Article number: 97280I
Keywords: Fibre lasers and amplifiers, Design of specific laser systems, Optical fibre testing and measurement of fibre parameters, Spectral and other filters, Other fibre optical devices and techniques, Optical coatings and filters, Fibre optics, laser stability, optical fibre amplifiers, optical fibre filters, optical fibre testing, optical pumping, thermo-optical effects, distributed modal filtering rod fiber, rod fiber amplifier, pump power, transverse modal instability threshold, absorption, size 85 mum, saturated power thermo-optical, thermo-optical heat load, active material, Applied Mathematics, Computer Science Applications, Electrical and Electronic Engineering, Electronic, Optical and Magnetic Materials, Condensed Matter Physics, Fiber, Fiber optics amplifiers and oscillators, Lasers, Thermal effects, Fiber lasers, Fibers, Laser applications, Active material, Induced absorption, Modal filtering, Modal instabilities, Multiple testing, Signal average, Thermo-optical, Fiber amplifiers
Electronic versions:
97280I.pdf
DOIs:
10.1117/12.2213274
Source: FindIt
Source-ID: 2306723143
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016