64Cu loaded liposomes as positron emission tomography imaging agents - DTU Orbit

64Cu loaded liposomes as positron emission tomography imaging agents

We have developed a highly efficient method for utilizing liposomes as imaging agents for positron emission tomography (PET) giving high resolution images and allowing direct quantification of tissue distribution and blood clearance. Our approach is based on remote loading of a copper-radionuclide (64Cu) using a new ionophore, 2-hydroxyquinoline, to carry 64Cu(II) across the membrane of preformed liposomes and deliver it to an encapsulated copper-chelator. Using this ionophore we achieved very efficient loading (95.5 ± 1.6%) and retention stability (>99%), which makes the 64Cu-liposomes highly applicable as PET imaging agents. We show the utility of the 64Cu-liposomes for quantitative in vivo imaging of healthy and tumor-bearing mice using PET. This remote loading method is a powerful tool for characterizing the in vivo performance of liposome based nanomedicine, and has great potential in diagnostic and therapeutic applications.

General information
Publication status: Published
Organisations: Colloids and Biological Interfaces Group, Self-organizing materials for nanotechnology Section,
Department of Micro- and Nanotechnology, Biomedical Tracers, Radiation Research Division, Risø National Laboratory for Sustainable Energy, University of Copenhagen
Pages: 2334-2341
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Biomaterials
Volume: 32
Issue number: 9
ISSN (Print): 0142-9612
Ratings:
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 8.1 SJR 3.302 SNIP 2.219
Web of Science (2011): Impact factor 7.404
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Original language: English
Keywords: Hevesy laboratory, Radiation research and nuclear technologies
DOI:
10.1016/j.biomaterials.2010.11.059
Source: orbit
Source-ID: 274111
Research output: Contribution to journal › Journal article – Annual report year: 2011 › Research › peer-review