64Cu loaded liposomes as positron emission tomography imaging agents

We have developed a highly efficient method for utilizing liposomes as imaging agents for positron emission tomography (PET) giving high resolution images and allowing direct quantification of tissue distribution and blood clearance. Our approach is based on remote loading of a copper-radionuclide (64Cu) using a new ionophore, 2-hydroxyquinoline, to carry 64Cu(II) across the membrane of preformed liposomes and deliver it to an encapsulated copper-chelator. Using this ionophore we achieved very efficient loading (95.5 ± 1.6%) and retention stability (>99%), which makes the 64Cu-liposomes highly applicable as PET imaging agents. We show the utility of the 64Cu-liposomes for quantitative in vivo imaging of healthy and tumor-bearing mice using PET. This remote loading method is a powerful tool for characterizing the in vivo performance of liposome based nanomedicine, and has great potential in diagnostic and therapeutic applications.

General information
State: Published
Organisations: Colloids and Biological Interfaces Group, Self-organizing materials for nanotechnology Section, Department of Micro- and Nanotechnology, Biomedical Tracers, Radiation Research Division, Risø National Laboratory for Sustainable Energy, University of Copenhagen
Pages: 2334-2341
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Biomaterials
Volume: 32
Issue number: 9
ISSN (Print): 0142-9612
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 9.21 SJR 3.111 SNIP 1.897
Web of Science (2017): Impact factor 8.806
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.89 SJR 2.9 SNIP 1.885
Web of Science (2016): Impact factor 8.402
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 9.35 SJR 3.404 SNIP 2.013
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 9.31 SJR 3.301 SNIP 2.162
Web of Science (2014): Impact factor 8.557
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 9.02 SJR 3.417 SNIP 2.167
Web of Science (2013): Impact factor 8.312
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 8.32 SJR 3.548 SNIP 2.171
Web of Science (2012): Impact factor 7.604
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 8.1 SJR 3.302 SNIP 2.219
Web of Science (2011): Impact factor 7.404