57Fe Mössbauer study of epitaxial TiN thin film grown on MgO(100) by magnetron sputtering - DTU Orbit (30/03/2019)

57Fe Mössbauer study of epitaxial TiN thin film grown on MgO(100) by magnetron sputtering

The properties and performance of TiN thin films are closely related to the concentration and mobility of lattice defects in the thin film structures of TiN. This makes a local atomic scale study of TiN thin films an ever-growing demand. Emission 57Fe Mössbauer spectroscopy (eMS) is a powerful tool in this regard, which we apply here to study an ultrathin TiN film epitaxially grown on MgO (100). With the help of theoretical calculations, our results show that most implanted Fe ions adopt a 2+ valence state and locate at the Ti sublattice in the bulk-like single crystalline grains, with the rest Fe residing at the grain boundaries as interstitials. A small percentage of nitrogen point defects (vacancy VN and interstitial N I) are observed in the bulk-like crystalline grains. A temperature-dependent, interstitial N I mediated site-exchange between N I and VN inside the crystal grain are deduced via a N2 dimmer like diffusion of N I through the crystal grains in the temperature range of 540 - 620 K. This is interesting in the perspective of exploring the catalytic property of TiN nanostructures. The titanium vacancy (VTi) is only detected at the grain boundaries. Annealing up to 813 K, both the VN and N I are annihilated in the crystalline grains and the V Ti is fully recovered with healing of the grain boundaries. However, no evidence of ferromagnetism due to dilute implantation of 57Mn/57Fe and or structural defects in the film is obtained. This suggests that the so far reported dilute magnetism and defect-induced ferromagnetism in TiN nanostructures requires a further systematic investigation.

General information
State: Published
Organisations: Center for Nuclear Technologies, Radiation Physics, University of Iceland, K.N. Toosi University of Technology, University of the Witwatersrand, Johannes Kepler University of Linz, Bulgarian Academy of Sciences, University of KwaZulu-Natal, Universidad del Pais Vasco, Ilmenau University of Technology, ISOLDE Radioactive Ion Beam facility
Pages: 682-691
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Applied Surface Science
Volume: 464
ISSN (Print): 0169-4332
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.22 SJR 1.093 SNIP 1.328
Web of Science (2017): Impact factor 4.439
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.37 SJR 0.958 SNIP 1.221
Web of Science (2016): Impact factor 3.387
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.13 SJR 0.89 SNIP 1.268
Web of Science (2015): Impact factor 3.15
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.96 SJR 0.948 SNIP 1.453
Web of Science (2014): Impact factor 2.711
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.78 SJR 0.96 SNIP 1.475
Web of Science (2013): Impact factor 2.538