400-GHz wireless transmission of 60-Gb/s nyquist-QPSK signals using UTC-PD and heterodyne mixer - DTU Orbit (17/02/2019)

400-GHz wireless transmission of 60-Gb/s nyquist-QPSK signals using UTC-PD and heterodyne mixer
We experimentally demonstrate an optical network compatible high-speed optoelectronics THz wireless transmission system operating at 400-GHz band. In the experiment, optical Nyquist quadrature phase-shift keying signals in a 12.5-GHz ultradense wavelength-division multiplexing grid is converted to the THz wireless radiation by photomixing in an antenna integrated unitravelling photodiode. The photomixing is transparent to optical modulation formats. We also demonstrate in the experiment the scalability of our system by applying single to four channels, as well as mixed three channels. Wireless transmission of a capacity of 60 Gb/s for four channels (15 Gb/s per channel) at 400-GHz band is successfully achieved, which pushes the data rates enabled by optoelectronics approach beyond the envelope in the frequency range above 300 GHz. Besides those, this study also validates the potential of bridging next generation 100 Gigabit Ethernet wired data stream for very high data rate indoor applications.

General information
State: Published
Organisations: Department of Photonics Engineering, High-Speed Optical Communication, Centre of Excellence for Silicon Photonics for Optical Communications, Department of Micro- and Nanotechnology
Contributors: Yu, X., Asif, R., Piels, M., Zibar, D., Galili, M., Morioka, T., Jepsen, P. U., Oxenløwe, L. K.
Pages: 765 - 770
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Terahertz Science and Technology
Volume: 6
Issue number: 6
Article number: 7556985
ISSN (Print): 2156-342X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.96 SJR 1.086 SNIP 1.584
Web of Science (2017): Impact factor 2.955
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.4 SJR 1.142 SNIP 1.557
Web of Science (2016): Impact factor 2.94
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.37 SJR 0.913 SNIP 1.316
Web of Science (2015): Impact factor 2.298
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.95 SJR 1.919 SNIP 2.705
Web of Science (2014): Impact factor 2.177
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.2 SJR 1.929 SNIP 4.206
Web of Science (2013): Impact factor 4.342
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 6.54 SJR 2.236 SNIP 4.289
ISI indexed (2012): ISI indexed no
ISI indexed (2011): ISI indexed no
Original language: English
Keywords: Radiation, Electrical and Electronic Engineering, Photomixing, THz photonics, THz wireless communication, ultradense wavelength-division multiplexing (UD-WDM), unitravelling carrier photodiode (UTC-PD), Broadband networks, Light modulation, Optical systems, Phase shift, Phase shift keying, Terahertz waves, Wavelength division multiplexing, 100 Gigabit Ethernet, Heterodyne mixers, High-speed optoelectronics, Indoor applications, Optical modulation format,
Ultradense wavelength division multiplexing, Wireless transmission systems, Wireless transmissions, Quadrature phase shift keying

Electronic versions:
07556985.pdf

DOIs:
10.1109/TTHZ.2016.2599077

Bibliographical note
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Source: FindIt
Source-ID: 2345151370
Research output: Research - peer-review › Journal article – Annual report year: 2016