3DXRD microscopy - a comparison with neutron diffraction

Publication: Research - peer-reviewJournal article – Annual report year: 2003

View graph of relations

3DXRD microscopy is a novel tool for fast and non-destructive characterisation of the individual grains and sub-grains inside bulk materials (powders or polycrystals). The method is based on diffraction with hard X-rays (E > 50 keV), enabling 3D studies of millimeter to centimeter-thick specimens. The position, volume, orientation, and elastic strain can be determined in hundreds of grains simultaneously. Furthermore, the evolution of the plastic strain can be characterised from grain rotations. Likewise, for coarse-grained materials, the topography of the grain boundaries can be mapped. The status of the technique is presented and the potential for in situ processing studies illustrated. The hard-X-ray method is compared to conventional neutron-diffraction techniques: texture and strain measurements, small-angle scattering, and in situ powder diffraction.
Original languageEnglish
JournalApplied Physics A: Materials Science & Processing
Publication date2002
Volume74
IssueS
PagesS1673-S1675
ISSN0947-8396
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 3
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6155798