3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges - DTU Orbit (14/12/2018)

3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges: Paper

WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

General information

State: Published
Organisations: Department of Wind Energy, Meteorology & Remote Sensing
Contributors: Mikkelsen, T. K., Sjöholm, M., Angelou, N., Mann, J.
Number of pages: 14
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: I O P Conference Series: Materials Science and Engineering
Volume: 276
Issue number: 1
Article number: 012004
ISSN (Print): 1757-8981
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.49 SJR 0.201 SNIP 0.573
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.39 SJR 0.197 SNIP 0.535
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.22 SJR 0.197 SNIP 0.361
Scopus rating (2014): CiteScore 0.18 SJR 0.206 SNIP 0.362
Scopus rating (2013): CiteScore 0.16 SJR 0.205 SNIP 0.287
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 0.14 SJR 0.183 SNIP 0.257
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0.1 SJR 0.23 SNIP 0.355
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.179 SNIP 0.155
Original language: English
Electronic versions:
DOIs:
10.1088/1757-899X/276/1/012004
Source: FindIt
Source-ID: 2394140999
Research output: Research - peer-review » Conference article – Annual report year: 2017