3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties - DTU Orbit (10/02/2019)

3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties

Scaffolds with multiple functionalities have attracted widespread attention in the field of tissue engineering due to their ability to control cell behavior through various cues, including mechanical, chemical, and electrical. Fabrication of such scaffolds from clinically approved materials is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN was demonstrated and the biological activity of released drug from IPN was confirmed using a DOX regulated green fluorescent reporter (GFP) gene expression assay with HeLa cells. Given its unique mechanical and drug releasing characteristics, IPN scaffolds may be used for directing stem cell differentiation by releasing various chemicals from its hydrogel network.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, BioLabChip, Fluidic Array Systems and Technology, Colloids and Biological Interfaces, Department of Chemical and Biochemical Engineering, The Danish Polymer Centre, Bioanalytics, Biomedics ApS
Number of pages: 9
Pages: 1321-1329
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Biomacromolecules
Volume: 17
Issue number: 4
ISSN (Print): 1525-7797
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.89 SJR 1.95 SNIP 1.339
Web of Science (2017): Impact factor 5.738
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.74 SJR 1.98 SNIP 1.323
Web of Science (2016): Impact factor 5.246
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.05 SJR 2.105 SNIP 1.434
Web of Science (2015): Impact factor 5.583
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.38 SJR 2.207 SNIP 1.642
Web of Science (2014): Impact factor 5.75
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.07 SJR 2.09 SNIP 1.593
Web of Science (2013): Impact factor 5.788