View graph of relations

The goal of the project is the development of portable, low-cost, reliable and highly-efficient ultrashort pulse (down to 100 fs) laser sources based on quantum dot (QD) material working in the spectral range 1.0-1.6 microns. This new generation of QD based mode-locked lasers has to become an alternative to the conventionally used ultrafast solid-state lasers, which are very expensive,cumbersome and complex to operate. The proposed research has a very high practical significance because it creates the possibility for evolution in different science and medical areas, in particular, advanced telecommunication, terahertz generation, optical sampling, biophotonics, non-invasive medical diagnosis and therapeutics. By placing a primary emphasis on novel materials, devices and system designs, this project will encompass a range of challenging and cutting-edge research directions that exploit QD-based semiconductor structures. The work in the frame of this project will mainly be focused on epitaxial growth of QD-based laser structures. It will be devoted to the optimisation of the epitaxial growth procedure, testing optical, structural and transport measurements and working on the design of epitaxial structure and design of the final devices. This research is in the area of interest of the host organisation and is interdependent with other projects running at the department. I will closely collaborate with other researchers in the fields of laser device design, laser characterisation and discuss results at every stage of the project. Moving to DTU, I bring all of my knowledge gained during my PhD and postdoctoral research work in Russia and France, which will lead to new scientific achievements at DTU. My connections to international scientists will increase the collaboration of DTU with other European goal of the project is the development of portable, low cost, reliable and highly-efficient ultrashort pulse (down to 100 fs) laser sources based on quantum dot (QD) material working in the spectral range 1.0-1.6 microns. This new generation of QD based mode locked lasers has to become an alternative to the conventionally used ultrafast solid state lasers, which are very expensive, cumbersome and complex to operate. The proposed research has a very high practical significance because it creates the possibility for evolution in different science and medical areas, in particular, advanced telecommunication, terahertz generation, optical sampling, biophotonics, non-invasive medical diagnosis and therapeutics. By placing a primary emphasis on novel materials, devices and system designs, this project will encompass a range of challenging and cutting-edge research directions that exploit QD-based semiconductor structures. The work in the frame of this project will mainly be focused on epitaxial growth of QD-based laser structures. It will be devoted to the optimisation of the epitaxial growth procedure, testing optical, structural and transport measurements and working on the design of epitaxial structure and design of the final devices. This research is in the area of interest of the host organisation and is interdependent with other projects running at the department. I will closely collaborate with other researchers in the fields of laser device design, laser characterisation and discuss results at every stage of the project. Moving to DTU, I bring all of my knowledge gained during my PhD and postdoctoral research work in Russia and France, which will lead to new scientific achievements at DTU. My connections to international scientists will increase the collaboration of DTU with other European and Russian Universities as well
StatusCurrent
Period01/01/1131/12/12
Financing sourceForsk. EU - Andre EU-midler
Research programmeForsk. EU - Andre EU-midler
Project ID70658
External project ID info:eu-repo/grantAgreement/EC/FP7/252890

Keywords

  • Semiconductor lasers, Ultrashort optical pulses, Quantum dots, Epitaxial growth, Biophotonics, Optoelectronics, Telecommunications technology, Nanotechnology
Download as:
Download as PDF
Select render style:
ShortLong
PDF
Download as HTML
Select render style:
ShortLong
HTML
Download as Word
Select render style:
ShortLong
Word

ID: 2257298