Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack – A literature review

Steel Fibre Reinforced Concrete (SFRC) is increasingly used in the construction of civil infrastructure. There is particular interest in the behaviour of SFRC under chemical and bio-chemical exposure, since it can be utilized, among others, for the construction of waste-water and agricultural infrastructure. However, the applicability of SFRC exposed to acidic environments is hindered by inconsistencies among international regulations. This paper reviews the published literature concerning the durability of SFRC exposed to acid attack. Research suggests that the exposure to acids of uncracked SFRC results in damage similar to what would occur in Plain Concrete (PC). There is insight into the non-critical corrosion of steel fibres embedded in the neutralized concrete layer, not entailing corrosion-induced cracking or spalling and steel fibres have been reported to limit secondary damage by bridging cracks and restraining the progress of the chemical-erosion front. However, there is limited data regarding the residual mechanical performance of cracked SFRC that has been exposed to acids. Published research suggests the existence of a critical crack width, below 0.3 mm, where the corrosion damage to the steel fibre is non-critical and there is a limited loss of fracture toughness. However, it has been observed that the exposure of cracked SFRC to acids leads to a larger deterioration of its residual mechanical performance compared to other exposures.
Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of civil infrastructure. However, there are inconsistencies among international standards and guidelines regarding the consideration of carbon-steel fibres for the structural verification of SFRC exposed to corrosive environments. This paper presents a review of the published research regarding carbonation- and chloride-induced corrosion of SFRC, and proposes a deterioration theory for cracked SFRC exposed to chlorides and carbonation, based on the damage at the fibre-matrix interface. The review confirms an overall
agreement among academics and regulators regarding the durability of uncracked SFRC exposed to chlorides and carbonation. Contrariwise, the durability of cracked SFRC is under discussion at the technical and scientific level, as there is a large dispersion on the experimental results and some of the mechanisms governing the corrosion of carbon-steel fibres in cracks and its effects on the fracture behaviour of SFRC are not fully understood.

General information

State: Published
Organisations: Department of Civil Engineering, Section for Structural Engineering, COWI AS, VIA University College
Contributors: Marcos Meson, V., Michel, A., Solgaard, A., Fischer, G., Edvardsen, C., Skovhus, T. L.
Number of pages: 20
Pages: 1-20
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Cement and Concrete Research
Volume: 103
ISSN (Print): 0008-8846
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.08 SJR 4.223 SNIP 3.191
Web of Science (2017): Impact factor 5.43
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.15 SJR 3.462 SNIP 3.2
Web of Science (2016): Impact factor 4.762
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.54 SJR 3.549 SNIP 3.162
Web of Science (2015): Impact factor 3.48
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.44 SJR 4.128 SNIP 3.583
Web of Science (2014): Impact factor 2.864
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.54 SJR 4.219 SNIP 3.873
Web of Science (2013): Impact factor 3.848
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.92 SJR 3.54 SNIP 3.875
Web of Science (2012): Impact factor 3.112
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.77 SJR 2.079 SNIP 3.397
Web of Science (2011): Impact factor 2.781
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.549 SNIP 2.785
Web of Science (2010): Impact factor 2.187
BFI (2009): BFI-level 2
Mechanical evaluation of self-healed cementitious material

General information
State: Published
Organisations: Department of Civil Engineering, Structures and Safety, Centre for oil and gas – DTU
Contributors: cristinelli, E., Marcos Meson, V., Fischer, G., Paegle, I.
Publication date: 2017
Peer-reviewed: Yes
Event: Abstract from Danish Hydrocarbon Research and Technology Centre Technology Conference 2017, Lyngby, Denmark.
Electronic versions:
Pages_from_DHRTC_Poster_abstracts_2017_at_registrere_17.pdf

Corrosion resistance of steel fibre reinforced concrete – a literature review
Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of prefabricated segmental linings for bored tunnels, since it entails simplified production processes and higher quality standards. However, international standards and guidelines are not consistent regarding the consideration of steel fibres for the structural verification of SFRC elements exposed to corrosive environments, hampering the development of civil infrastructure built of SFRC. In particular, the long-term effect of exposure to chlorides is in focus and under discussion. This paper reviews the existing literature concerning chloride-induced corrosion on steel fibres, as well as the impact of steel fibre corrosion on the residual-tensile strength of SFRC. The review confirms the agreement among academics and regulators regarding the superior durability of un-cracked SFRC exposed to chlorides, relative to conventional reinforcement. However, the durability of cracked SFRC is still under discussion, as the mechanisms governing the corrosion of carbon-steel fibres in cracks and its effects on the fracture behaviour of SFRC are still unclear. Nevertheless, there is insight among several researchers concerning the existence of a critical crack width, below 0.20 mm, where corrosion of carbon-steell fibres is not critical and the structural integrity of the exposed SFRC can be ensured over the long-term. A doctoral project investigating chloride-induced corrosion of steel fibres on cracked SFRC has been initiated, in order to explore the governing deterioration mechanisms.

General information