TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish energy system

As Denmark progresses towards a carbon neutral future, energy system models are required to address the challenges of the energy transition. This article describes design, input data and current usage of TIMES-DK, the first Danish energy system model that includes the complete national energy system, covering long-term technology investments. The article aims at explaining the modelling approach; highlighting strengths and reflecting upon limitations of the model; illustrating possible applications of TIMES-DK and inspiring new model developments. Some of the key strengths of the model include simultaneous optimisation of operation and investments across the complete energy system over the whole modelling horizon, explicit representation of the most important sectors of the economy, modular structure and the possibility of linking to a computable general equilibrium model for an additional insight on, e.g. public finance or CO2-leakage. TIMES-DK is being developed in close collaboration between an energy agency, a university and a consulting firm, to improve its robustness, relevance and impact on policy making. It allows for a wide range of applications including exploratory energy scenarios and policy analysis. To meet challenges of the future, further development of the model is needed and consequently the article provides references to ongoing projects addressing current development needs, such as improved representation of transport and flexible handling of the temporal dimension. To support a democratic and transparent process around decisions for the future Danish energy system, TIMES-DK should become available to interested parties.

General information
State: Published
Organisations: Technical University of Denmark, Department of Management Engineering, Systems Analysis, Danish Energy Agency, E4SMA
Contributors: Balyk, O., Andersen, K. S., Dockweiler, S., Gargiulo, M., Karlsson, K., Næraa, R., Petrović, S., Tattini, J., Termansen, L. B., Venturini, G.
Pages: 13-22
Publication date: 1 Jan 2019
Peer-reviewed: Yes

Publication information
Journal: Energy Strategy Reviews
Volume: 23
ISSN (Print): 2211-467X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.38 SJR 1.009 SNIP 1.29
Web of Science (2017): Impact factor 2.164
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.9 SJR 0.833 SNIP 0.883
Global outlook on energy technology development

Excess heat is present in many sectors, and its utilization could reduce the primary energy use and emission of greenhouse gases. This work presents a geographical mapping of excess heat, in which excess heat from the industry and utility sector was distributed to specific geographical locations in Denmark. Based on this mapping, a systematic approach for identifying cases for the utilization of excess heat is proposed, considering the production of district heat and process heat, as well as power generation. The technical and economic feasibility of this approach was evaluated for six cases. Special focus was placed on the challenges for the connection of excess heat sources to heat users. To account for uncertainties in the model input, different methods were applied to determine the uncertainty of the results and the most important model parameters. The results show how the spatial mapping of excess heat sources can be used to identify their utilization potentials. The identified case studies show that it can be economically feasible to connect the heat sources to the public energy network or to use the heat to generate electricity. The uncertainty analysis suggests that the results are indicative and are particularly useful for a fast evaluation, comparison and prioritization of possible matches. The excess heat temperature and obtainable energy price were identified as the most important input parameters.

Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS

Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS

Excess heat is present in many sectors, and its utilization could reduce the primary energy use and emission of greenhouse gases. This work presents a geographical mapping of excess heat, in which excess heat from the industry and utility sector was distributed to specific geographical locations in Denmark. Based on this mapping, a systematic approach for identifying cases for the utilization of excess heat is proposed, considering the production of district heat and process heat, as well as power generation. The technical and economic feasibility of this approach was evaluated for six cases. Special focus was placed on the challenges for the connection of excess heat sources to heat users. To account for uncertainties in the model input, different methods were applied to determine the uncertainty of the results and the most important model parameters. The results show how the spatial mapping of excess heat sources can be used to identify their utilization potentials. The identified case studies show that it can be economically feasible to connect the heat sources to the public energy network or to use the heat to generate electricity. The uncertainty analysis suggests that the results are indicative and are particularly useful for a fast evaluation, comparison and prioritization of possible matches. The excess heat temperature and obtainable energy price were identified as the most important input parameters.
Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating

Industrial excess heat may often be utilised for district heating and thus replace existing expensive or CO₂-emitting technologies. Previous works analysed the distribution of excess heat by temperature intervals and their geographical distribution relative to district heating areas. A more detailed analysis of the most suitable types of industries and the costs is required, allowing a targeted exploitation of this resource. This work extends the spatial and thermodynamic analysis, to account for the temporal match between industrial excess heat and district heating demands, as well as the costs for implementation and operation of the systems. This allows the determination of cost-effective district heating potentials, as well as the analysis of different industries and technological requirements. The results show that the temporal mismatch between excess heat and district heating demand and lack of demand, reduces the theoretical substitution potential by almost 30%. If heat storages are introduced, the total potential is reduced by only 10%. A majority of the excess heat can
be utilised at socio-economic heating costs lower than the average Danish district heating price and the cost of solar district heating. Excess heat from oil refineries, building material and food production can be utilised at the lowest specific costs.

General information

State: Published
Organisations: Department of Mechanical Engineering, Thermal Energy, Department of Management Engineering, Systems Analysis, Viegand Maagøe A/S
Contributors: Bühler, F., Petrović, S., Holm, F. M., Karlsson, K., Elmegaard, B.
Pages: 715-728
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Energy
Volume: 151
ISSN (Print): 0360-5442
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.6 SJR 1.99 SNIP 1.923
Web of Science (2017): Impact factor 4.968
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.17 SJR 1.974 SNIP 1.823
Web of Science (2016): Impact factor 4.52
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.03 SJR 2.22 SNIP 2.037
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.7 SJR 2.575 SNIP 2.602
Web of Science (2014): Impact factor 4.844
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.02 SJR 2.458 SNIP 2.556
Web of Science (2013): Impact factor 4.159
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.25 SJR 1.935 SNIP 2.214
Web of Science (2012): Impact factor 3.651
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4 SJR 1.566 SNIP 2.01
Web of Science (2011): Impact factor 3.487
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.712 SNIP 2.46
Web of Science (2010): Impact factor 3.597
Web of Science (2010): Indexed yes
Scenarios for sustainable heat supply and heat savings in municipalities - the case of Helsingør, Denmark

Local climate action is not only a domain of large cities, but also smaller urban areas that increasingly address climate change mitigation in their policy. The Danish municipality of Helsingør can achieve a substantial CO2 emissions reduction by transforming its heat supply and deploying heat savings. In this paper, we model the heating system of Helsingør, assess it from a simple socio- and private-economic perspective, develop future scenarios, and conduct an iterative process to derive a cost-optimal mix between district heating, individual heating and heat savings. The results show that in 2030 it is cost-optimal to reduce the heating demand by 20–39% by implementing heat savings, to deploy 32%–41% of district heating and to reduce heating-related CO2 emissions by up to 95% in comparison to current emissions. In 2050, the cost-optimal share of district heating in Helsingør increases to between 38 and 44%. The resulting average heating costs and CO2 emissions are found to be sensitive to biomass and electricity price. Although the findings of the study are mainly applicable for Helsingør, the combined use of the Least Cost Tool and modelling with energyPRO is useful in planning of heating and/or cooling supply for different demand configurations, geographical region and scale.
Web of Science (2017): Impact factor 4.968
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.17 SJR 1.974 SNIP 1.823
Web of Science (2016): Impact factor 4.52
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.03 SJR 2.22 SNIP 2.037
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.7 SJR 2.575 SNIP 2.602
Web of Science (2014): Impact factor 4.844
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.02 SJR 2.458 SNIP 2.556
Web of Science (2013): Impact factor 4.159
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.25 SJR 1.935 SNIP 2.214
Web of Science (2012): Impact factor 3.651
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4 SJR 1.566 SNIP 2.01
Web of Science (2011): Impact factor 3.487
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.712 SNIP 2.46
Web of Science (2010): Impact factor 3.597
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.663 SNIP 2.357
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.103 SNIP 1.438
Scopus rating (2007): SJR 0.902 SNIP 1.434
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.851 SNIP 1.315
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.942 SNIP 1.153
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.703 SNIP 1.105
Scopus rating (2003): SJR 1.024 SNIP 1.45
Scopus rating (2002): SJR 0.806 SNIP 1.257
Scopus rating (2001): SJR 1.079 SNIP 1.089
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.698 SNIP 0.962
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.624 SNIP 0.687

Original language: English
Identification of Excess Heat Utilisation Potential using GIS: Analysis of Case Studies for Denmark
Excess heat is present in many sectors, such as the industry and utility. The utilization of these heat sources could reduce the primary energy consumption and thus reduce carbon dioxide emissions. This work presents the results of a geographical mapping of excess heat, in which excess heat from the industry and utility sector is distributed to specific geographical locations in Denmark. Based on this mapping, a systematic approach for identifying cases for the utilization of excess heat is proposed, considering district heating, process heat and power generation. The technical and economic feasibility of using this approach is evaluated for four scenarios. Special focus is placed on the challenges for the connection of excess heat sources to heat consumers, as well as tax schemes applicable in Denmark. To account for uncertainties in the model input, Monte Carlo simulations and Morris Screenings are performed to determine the standard deviation of the results and to determine the most important model parameters. The presented method shows how the geographical mapping of excess heat sources can be used to identify its utilization potentials. In combination with the economic model, a fast evaluation and comparison of the feasibility of different matches can be performed. The evaluation of the identified case studies shows that it is economically feasible to connect the heat source to the public energy network or use the heat to generate electricity. However, the uncertainty analysis suggests that the results can only be indicative and are useful for a fast evaluation and comparison of different matches.

General information
State: Published
Organisations: Department of Mechanical Engineering, Thermal Energy, Department of Management Engineering, Systems Analysis, Viegand Maagøe A/S
Contributors: Bühler, F., Petrovic, S., Ommen, T. S., Holm, F. M., Elmegaard, B.
Number of pages: 16
Publication date: 2017

Host publication information
Title of host publication: Proceedings of ECOS 2017: 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
Keywords: Excess heat, Heat recovery, GIS, Industry, Utility, District heating, Power generation, Energy Efficiency
Electronic versions:
ECOS_2017_paper_119.pdf. Embargo ended: 01/08/2017
Research output: Research - peer-review > Article in proceedings – Annual report year: 2017

Industrial excess heat for district heating in Denmark
Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

General information
State: Published
Organisations: Department of Mechanical Engineering, Thermal Energy, Department of Management Engineering, Systems Analysis
Contributors: Bühler, F., Petrovic, S., Karlsson, K. B., Elmegaard, B.
Pages: 991-1001
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Applied Energy
Volume: 205
ISSN (Print): 0306-2819
Ratings:

BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.44 SJR 3.162 SNIP 2.765
Web of Science (2017): Impact factor 7.9
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.011 SNIP 2.61
Web of Science (2016): Impact factor 7.182
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.4 SJR 2.835 SNIP 2.593
Web of Science (2015): Impact factor 5.746
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.93 SJR 3.158 SNIP 3.218
Web of Science (2014): Impact factor 5.613
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.59 SJR 3.06 SNIP 3.346
Web of Science (2013): Impact factor 5.261
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.69 SJR 2.778 SNIP 3.076
Web of Science (2012): Impact factor 4.781
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.5 SJR 2.416 SNIP 2.827
Web of Science (2011): Impact factor 5.106
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.531 SNIP 2.259
Web of Science (2010): Impact factor 3.915
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.992 SNIP 1.85
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.95 SNIP 1.206
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.168 SNIP 1.704
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.95 SNIP 1.277
Scopus rating (2005): SJR 1.02 SNIP 0.988
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.67 SNIP 0.844
Heat supply planning for the ecological housing community Munksøgård

Munksøgård is a housing community near the city of Roskilde, Denmark. In 2014, Munksøgård's residents have agreed to change the existing heat supply system. The choice of future heat supply was narrowed to heat pumps, new biomass boiler and connection to nearby district heating network. The present paper compares results from techno-economic energy system analysis, simple private-economic analysis and assessment of externalities related to the heat supply and discusses the differences in conclusions - is the economic optimal solution different from a system or private-economic point of view? The techno-economic energy system analysis is done using TIMES-DTU model, which optimizes over all sectors in Denmark and all periods until 2050. The result from this model gives the least expensive solution from the overall system point of view. A spreadsheet model has been developed to do the private-economic analysis and the evaluation of external effects related to the different solutions.
Residential heat pumps in the future Danish energy system

Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system. We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050. The analysis of the Danish energy system
was done for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050.

Residential heat pumps supply around 25% of total residential heating demand after 2035. The improved modelling of residential heat pumps proved to have influence on the results. First, it would be optimal to invest in more ground-source heat pumps, but there is not enough available ground area. Second, the total system costs are higher when COPs are modelled as temperature-dependent compared to fixed COPs over a year.

General information

State: Published
Organisations: Department of Management Engineering
Contributors: Petrovic, S., Karlsson, K. B.
Pages: 787-797
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Energy
Volume: 114
ISSN (Print): 0360-5442
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.6 SJR 1.99 SNIP 1.923
Web of Science (2017): Impact factor 4.968
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.17 SJR 1.974 SNIP 1.823
Web of Science (2016): Impact factor 4.52
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.03 SJR 2.22 SNIP 2.037
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.7 SJR 2.575 SNIP 2.602
Web of Science (2014): Impact factor 4.844
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.02 SJR 2.458 SNIP 2.556
Web of Science (2013): Impact factor 4.159
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.25 SJR 1.935 SNIP 2.214
Web of Science (2012): Impact factor 3.651
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4 SJR 1.566 SNIP 2.01
Web of Science (2011): Impact factor 3.487
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.712 SNIP 2.46
Ringkøbing-Skjern energy atlas for analysis of heat saving potentials in building stock

Ringkøbing-Skjern municipality aims to be 100% self-sufficient in renewable energy supply starting from 2020. It is expected that the building sector will contribute by reducing energy demand by 25-50%. Technical, economic, environmental and geographical aspects need to be considered when analysing such drastic change of municipality's energy system. For that purpose, GIS-based Ringkøbing-Skjern Energy Atlas has been developed. The present paper utilises Ringkøbing-Skjern Energy Atlas together with the Heating Model to calculate potentials and costs of heat saving measures. The results show that the reduction of heating demand by 25% and 35% can be achieved at the annuitized full cost lower than 1.7 and 2 DKK/kWh, respectively. The results also show that significant heat saving potential lies in farmhouses and detached houses as well as in buildings built before 1950. Over 75% of very cheap heat saving potential can be harvested by insulating floors, while majority of heat saving potential cheaper than 2 DKK/kWh can be utilised by insulating floors and installing mechanical ventilation systems. After heat savings and heat supply options are compared from a private-economic perspective, it is concluded that heat savings should be directed towards buildings supplied by oil boilers, natural gas boilers and ground-source heat pumps.

General information
State: Published
Organisations: Department of Management Engineering
Contributors: Petrovic, S., Karlsson, K. B.
Number of pages: 12
Pages: 166–177
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Energy
Volume: 110
ISSN (Print): 0360-5442
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.6 SJR 1.99 SNIP 1.923
Web of Science (2017): Impact factor 4.968
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.17 SJR 1.974 SNIP 1.823
Web of Science (2016): Impact factor 4.52
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.03 SJR 2.22 SNIP 2.037
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.7 SJR 2.575 SNIP 2.602
Web of Science (2014): Impact factor 4.844
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.02 SJR 2.458 SNIP 2.556
Web of Science (2013): Impact factor 4.159
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.25 SJR 1.935 SNIP 2.214
Web of Science (2012): Impact factor 3.651
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4 SJR 1.566 SNIP 2.01
Web of Science (2011): Impact factor 3.487
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.712 SNIP 2.46
Web of Science (2010): Impact factor 3.597
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.663 SNIP 2.357
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.103 SNIP 1.438
Scopus rating (2007): SJR 0.902 SNIP 1.434
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.851 SNIP 1.315
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.942 SNIP 1.153
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.703 SNIP 1.105
Scopus rating (2003): SJR 1.024 SNIP 1.45
Scopus rating (2002): SJR 0.806 SNIP 1.257
Scopus rating (2001): SJR 1.079 SNIP 1.089
Web of Science (2001): Indexed yes
Heat supply planning for the ecological housing community Munksøgård

Munksøgård is a housing community near the city of Roskilde, Denmark. In 2014, Munksøgård's residents have agreed to change the existing heat supply system. The choice of future heat supply was narrowed to heat pumps, new biomass boiler and connection to nearby district heating network.

The present paper compares results from techno-economic energy system analysis, simple private-economic analysis and assessment of externalities related to the heat supply and discusses the differences in conclusions - is the economic optimal solution different from a system or private-economic point of view?

The techno-economic energy system analysis is done using TIMES-DTU model, which optimizes over all sectors in Denmark and all periods until 2050. The result from this model gives the least expensive solution from the overall system point of view. A spreadsheet model has been developed to do the private-economic analysis and the evaluation of external effects related to the different solutions.

Optimal development of the future Danish energy system – insights from TIMES-DTU model

After a long period of transition, Danish energy system is half-way towards completely renewable in 2050. Drastic changes happened in the last forty years – the imported oil has been replaced by a mix of coal and natural gas, energy efficiency and conservation have been improved by extensive use of CHP-based district heating and heat saving measures. In the same period Denmark became well-known by integration and export of wind turbines. In line with the changes in the past, Denmark currently has very ambitious renewable energy targets, most ambitious being the 100 % renewable energy system in 2050. To achieve this, it is obvious that the present energy system needs to change, but the open question is how this should be done. In order to answer this question, the present paper uses TIMES-DTU model. TIMES-DTU is technology-rich, bottom-up, optimisation model covering all sectors of the Danish energy system, assuming full foresight and perfect competition. It simultaneously optimises investments and operation across all sectors and all time periods.

Three different scenarios have been described in the present paper: (i) Base scenario without any policy constraints imposed on the model, (ii) WLP with the constraint that 50 % of electricity production should come from wind starting from 2020, and (iii) WLP-NFE scenario with the constraint that power and heat sector should be fossil fuel-free starting from 2035 and Denmark should be 100 % renewable starting from 2050. In all scenarios, Denmark was constrained to be a net exporter of electricity. The results imply that heat demand in future Danish energy system will be significantly reduced as a result of significant heat saving measures within the building stock, especially in rural and sub-urban areas. In urban areas, large district heating networks will supply between 55 and 73 % of heat supply in the years close to 2050. Electricity demand will be largely increased mainly due to transition to large scale heat pumps in the district heating networks. More than 90 % of increased demand for electricity will be based on on-shore and off-shore wind energy. WLP scenario implies less than 1 % higher total system costs compared to Base scenario, while WLP-NFE scenario implies 5-6 % higher total system costs compared to Base scenario. An additional conclusion from the current study is that Denmark has sufficient
resources to achieve self-sufficiency in energy supply.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis
Contributors: Petrovic, S., Karlsson, K. B., Balyk, O.
Number of pages: 12
Publication date: 2015

Host publication information
Title of host publication: Proceedings of ECOS 2015 : 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
Keywords: Energy system modelling, TIMES model, Energy system planning, Energy conservation, Renewable energy system
Electronic versions: ECOS_2015_Petrovic_TIMES_DTU.pdf
Research output: Research - peer-review » Article in proceedings – Annual report year: 2015

Residential heat pumps in the future Danish energy system

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis
Contributors: Petrovic, S., Karlsson, K. B.
Publication date: 2015
Media of output: PowerPoint

Event information
Event: 68th Semi-Annual ETSAP Meeting
Location: Sophia Antipolis, France

Electronic versions: Residential_heat_pumps.pdf
Research output: Research » Sound/Visual production (digital) – Annual report year: 2015

Ringkøbing-Skjern Energy Atlas for municipal energy planning

Ringkøbing-Skjern is Denmark's largest municipality, located in the west part of Central Denmark Region. Its medium-term goal is to achieve 100 % self-sufficiency in renewable energy supply by 2020. To achieve this ambitious goal, future courses of action have been outlined in the municipality's energy strategy "Energy2020" and divided into five groups: increasing production from wind, bioenergy and other renewable energy sources, reducing heat demand in buildings and converting transportation sector to renewable energy. The analysis of technical, economic and environmental impacts of such a variety of technologies on the municipality's energy system requires highly detailed decision support system. For that purpose, GIS-based energy atlas has been developed for Ringkøbing-Skjern municipality. The data about energy supply and demand, transmission and distribution infrastructure, energy resources, societal and other energy data have been geographically referenced and combined with the tools built in ArcGIS software. The data have been collected from various sources: freely accessible public databases, the municipality, district heating and electricity companies, Danish transmission system operator, etc. The focus in the energy atlas is put on the geographical level of details, such as locations of district heating pipes and wind turbines, but the objects have been described with technical parameters and historical values as well. The applicability of the energy atlas is elaborated in the present paper and it is concluded that it can be used for analysis of heat saving measures in the building stock, district heating expansion and site-selection analysis for new wind turbines or biogas plants. In addition to that, it has proven to be useful as a data container and pre-analysis tool for energy system models and as a visualization tool. The continuous updating of the atlas while maintaining the sufficient level of data confidentiality is considered crucial for its long-term value; the strategy for continuous updating is presented in a separate section. Finally, since the methods and procedures used to create the atlas are irrespective from administrative boundaries, neither obstacle is observed towards creating the GIS-based energy atlases for other Danish municipalities or for Denmark as a whole.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis
Contributors: Petrovic, S., Karlsson, K. B.
Number of pages: 20
Publication date: 2015

Host publication information
Danish heat atlas as a support tool for energy system models

In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive infrastructure investments, such as the expansion of district heating networks and the introduction of significant heat saving measures require highly detailed decision-support tool. A Danish heat atlas provides highly detailed database with extensive information about more than 2.5 million buildings in Denmark. Energy system analysis tools incorporate environmental, economic, energy and engineering analysis of future energy systems and are considered crucial for the quantitative assessment of transitional scenarios towards future milestones, such as EU 2020 goals and Denmark’s goal of achieving fossil free society after 2050. The present paper shows how a Danish heat atlas can be used for providing inputs to energy system models, especially related to the analysis of heat saving measures within building stock and expansion of district heating networks. As a result, marginal cost curves are created, approximated and prepared for the use in optimization energy system model. Moreover, it is concluded that heat atlas can contribute as a tool for data storage and visualisation of results.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis
Contributors: Petrovic, S., Karlsson, K. B.
Pages: 1063–1076
Publication date: 2014
Peer-reviewed: Yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.72 SJR 1.674 SNIP 2.242
Web of Science (2012): Impact factor 2.775
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.03 SJR 1.24 SNIP 1.82
Web of Science (2011): Impact factor 2.216
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.35 SNIP 1.735
Web of Science (2010): Impact factor 2.072
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.302 SNIP 1.798
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.471 SNIP 1.886
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.186 SNIP 1.807
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.294 SNIP 1.797
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.542 SNIP 1.769
Scopus rating (2004): SJR 1.043 SNIP 1.467
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.879 SNIP 1.382
Scopus rating (2002): SJR 0.972 SNIP 1.467
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.794 SNIP 0.86
Scopus rating (2000): SJR 0.568 SNIP 0.72
Scopus rating (1999): SJR 0.512 SNIP 0.731

Original language: English
Keywords: Energy system models, GIS, Heat savings, District heating, Heat atlas, Demand and supply
Electronic versions:
Danish_heat_atlas_as_a_support_tool_for_energy_system_models.pdf. Embargo ended: 28/05/2016
DOIs:
10.1016/j.enconman.2014.04.084

Bibliographical note
The work presented in this paper is a result of the research activities of the Strategic Research Centre for 4th Generation District Heating (4DH), which has received funding from The Danish Council for Strategic Research.
Research output: Research - peer-review › Journal article – Annual report year: 2014

Global and national TIMES models: Use of IEA-ETSAP TIMES models in Denmark
An important part of the cooperation within the IEA (International Energy Agency) is organised through national contributions to “Implementing Agreements” on energy technology and energy analyses. One of them is ETSAP (Energy Technology Systems Analysis Programme), started in 1976. Denmark has signed the agreement and contributed to some early annexes. This document is the final report of the project ”Danish participation in IEA-ETSAP, Annex XII, 2011-2013” under the Danish Energy Technology Development and Demonstration Programme (EUDP) 2010. A first complete draft of the ETSAP final report for Annex XII will not be released until January 2015. A new project, ”Danish participation in IEA-ETSAP, Annex XIII, 2014-2016” was granted by the EUDP 2013. The current report from the Annex XII project is final edition of the preliminary edition Risø-R-1774, which was published in March 2011. The use of the ETSAP tools is linked to many other projects focusing on model application worldwide. This includes the organisations and institutions gathering in the annual International Energy Workshops (IEW), which are held back-to-back with one of the ETSAP semi-annual workshops. In recent years the ETSAP modelling tools have contributed to several projects under the various European research programmes.
Heat savings and district heating in TIMES-DTU model

Model for Determining Geographical Distribution of Heat Saving Potentials in Danish Building Stock

Since the global oil crisis in the 1970s, Denmark has followed a path towards energy independency by continuously improving its energy efficiency and energy conservation. Energy efficiency was mainly tackled by introducing a high number of combined heat and power plants in the system, while energy conservation was predominantly approached by implementing heat saving measures. Today, with the goal of 100% renewable energy within the power and heat sector by the year 2035, reductions in energy demand for space heating and the preparation of domestic hot water remain at the top of the agenda in Denmark. A highly detailed model for determining heat demand, possible heat savings and associated costs in the Danish building stock is presented. Both scheduled and energy-saving renovations until year 2030 have been analyzed. The highly detailed GIS-based heat atlas for Denmark is used as a container for storing data about physical properties for 2.5 million buildings in Denmark. Consequently, the results of the analysis can be represented on a single building level. Under the assumption that buildings with the most profitable heat savings are renovated first, the consequences of heat savings for the economy and energy system have been quantified and geographically referenced. The possibilities for further improvements of the model and the application to other geographical regions have been discussed.
Spatial issues when optimising waste treatment and energy systems – A Danish Case Study
This study addresses the challenge of including geographical information related to waste resources, energy demands and production plants, and transport options in the optimization of waste management. It analyses how waste may serve as an energy source through thermal conversion and anaerobic digestion. The relation to the energy sector is taken into account. The geographically specific potentials and utilization possibilities of waste are taken into account. Thus, the relative location of the resources (in this study waste and manure for co-digestion) is accounted for. Also the location of the resources relative to their utilization (in this study mainly the location of district heating networks) is considered. The temporal dimension is important for the energy sector which displays distinct variations over the year, week and day, and this is reflected by a subdivision of the extension of the year. The study provides an analysis of the Danish waste and energy systems with a spatial and temporal resolution.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis, RAM-løse edb
Contributors: Pizarro Alonso, A. R., Münster, M., Petrovic, S., Ravn, H.
Number of pages: 15
Publication date: 2014

Host publication information
Title of host publication: Proceedings Venice 2014, 5th International Symposium on Energy from Biomass and Waste
Publisher: CISA Publisher
Source: PublicationPreSubmission
Source-ID: 105175880
Research output: Research - peer-review › Article in proceedings – Annual report year: 2015

Use of Danish Heat Atlas and energy system models for exploring renewable energy scenarios
In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to energy conservation measures on the demand side and energy efficiency improvements on the supply side. Nowadays the optimal expansion of district heating networks in relation with significant heat saving measures that are capital intensive infrastructure investments require highly detailed decision support tools. The Heat Atlas for Denmark provides a highly detailed database and includes heat demand and possible heat savings for about 2.5 million buildings with associated costs included. Energy systems modelling tools that incorporate economic, environmental, energy and engineering analysis of future energy systems are considered crucial for quantitative
assessment of transitional scenarios towards future milestones, such as (i) EU 2020 goals of reducing greenhouse gas emissions, increasing share of renewable energy and improving energy efficiency and (ii) Denmark’s 2050 goals of covering entire energy supply by renewable energy. Optimization and simulation energy system models are currently used in Denmark. The present paper tends to provide a comprehensive insight into the use of the Heat Atlas for Denmark in recent studies dealing with municipal strategic energy planning and main scientific papers addressing those issues. A literature review of current advancements and discoveries in linking the Heat Atlas and energy system models will be presented, while special attention will be given to treating competing investments between heat supply and savings using optimization models. Main scientific contributors, their methodologies and areas for future research will be identified.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Energy Systems Analysis
Contributors: Petrovic, S., Karlsson, K. B.
Pages: 0852-1 - 0852-20
Publication date: 2013

Host publication information
Title of host publication: Proceedings of the 8th Conference on Sustainable Development of Energy, Water and Environment Systems
Keywords: Energy system models, GIS, Heat savings, District heating, Heat atlas, Demand and supply
Electronic versions:
SDEWES2013_FP_852
Source: dtu
Source-ID: u::9292
Research output: Research - peer-review › Article in proceedings – Annual report year: 2013

Projects:

progRESSHEAT: Fostering the use of renewable energies for heating and cooling
The progRESSHEAT project aims at assisting local, regional, national and EU political leaders in developing policy and strategies to ensure a quick and efficient deployment of renewables in heating and cooling networks. The project’s aim is in line with the objectives of the Renewable Energy Directive and the Energy Performance of Buildings Directive that require Member States to develop ambitious policies as regards the use of renewable energy sources and energy efficiency in heating and cooling networks. progRESSHEAT is intended to support the market uptake of existing and emerging renewable electricity, heating and cooling technologies. More specifically, the project helps policy makers develop integrated, effective and efficient policy strategies aimed at achieving a fast and strong penetration of renewable and efficient heating and cooling systems. This includes the analysis of cross-sectoral effects between renewables and energy efficiency measures in industrial heat and cold, waste heat, heating and cooling in buildings and district heating. Together with six local authorities in six target countries across Europe (Austria, Germany, Czech Republic, Denmark, Portugal, Romania), heating and cooling strategies will be developed through a profound analysis of (1) heating and cooling demand and future developments, (2) long-term potential of renewable energies and waste heat in the regions, (3) barriers & drivers and (4) a model-based assessment of policy intervention in scenarios up to 2050. The established local energy advisory tool EnergyPRO will be used for the local studies and further developed to appropriately reflect district heating and cooling. The final versions for the investigated regions will be handed over to the authorities. In the target countries, progRESSHEAT will support the implementation of national heating and cooling plans which have to be released by member states by the end of 2015. The plans will include a policy outlook on how the potentials identified by the comprehensive assessment will be achieved. progRESSHEAT will assist national policy makers in implementing suitable policies with a model-based quantitative impact assessment of local, regional and national policies up to 2050. Policy makers and other stakeholders are strongly considered in the process. They will be offered the opportunity to learn from the experience of other players and gain deep understanding of the impact of policy instruments and their specific design. They are involved in the project via policy group meetings, workshops, interviews and webinars dedicated to policy development assistance, capacity-building and dissemination. The project is supported by the Horizon 2020 programme of the European Union.

Münster, M., Project Coordinator, Department of Management Engineering, Systems Analysis
Karlsson, K. B., Project Participant, Department of Management Engineering, Systems Analysis
Petrovic, S., Project Participant, Department of Management Engineering, Systems Analysis
Kitzing, L., Project Participant, Department of Management Engineering, Systems Analysis
Ben Amer, S., Project Participant, Department of Management Engineering, Systems Analysis
Salvucci, R., Project Participant, Department of Management Engineering, Systems Analysis
01/03/2015 → 01/10/2017

Collaborators: Fraunhofer Institute for Systems and Innovation Research ISI, Institute for Resource Efficiency and Energy Strategies - IREES GmbH, Gate 21, City of Litomerice, Vienna University of Technology, Agencia Portuguesa de Eficiencia de la Energía (Agência da Energia) - APEE, Instituto de Engenharia Mecânica e Gestão Industrial - INEGI, ee energy engineers GmbH, ÖÖ Energiesparverband, Energy Cities, the European association of local authorities in energy transition
Geographical representations of renewable energy systems
Petrovic, S., PhD Student, Department of Management Engineering
Karlsnson, K. B., Main Supervisor, Department of Management Engineering
Møller, B., Supervisor
Heningsen, G., Examiner, Department of Management Engineering
Balstrøm, T., Examiner
Balke, T. F., Examiner
Bolkesjø, T. F., Examiner
Institut, samfinansiering
01/11/2012 → 19/01/2017
Award relations: Geographical representations of renewable energy systems
Project: PhD

Activities:

Accounting for climate change-induced change in space heating demand: case of Denmark
Period: 17 Jun 2018 → 21 Jun 2018
Stefan Petrovic (Speaker)
Olexandr Balyk (Other)
Morten Andreas Dahl Larsen (Other)
Andrea Marin Radoszynski (Other)
Department of Management Engineering
Systems Analysis
Degree of recognition: International

Related event

73rd semi-annual ETSAP meeting
17/06/2018 → 21/06/2018
Gothenburg, Sweden
Activity: Talks and presentations › Conference presentations

Policies to drive heating and cooling towards decarbonisation: a model based ex-ante assessment
Period: 10 Jun 2018 → 13 Jun 2018
Lukas Kranzl (Speaker)
Richard Büchele (Other)
Marcus Hummel (Other)
Marie Münster (Guest lecturer)
Stefan Petrovic (Other)
Sara Ben Amer (Guest lecturer)
Kenneth Bernard Karlsson (Guest lecturer)
Tobias Fleiter (Other)
Eftim Popovski (Other)
Ali Aydemir (Other)
Jan Steinbach (Other)
Department of Management Engineering

Description
50% of final energy demand in the EU-28 is used for heating and cooling (H/C). Thus, a growing focus of climate policies is put on this sector. While national and EU policies are essential, also local initiatives and instruments are required. Thus, the key question of our paper is: Which policies are needed on the national and local level to drive heating and cooling towards decarbonisation? We analysed this question for six selected countries and local case studies within these countries. The paper covers the whole heating and cooling sector, i.e. space heating and hot water preparation in buildings, process heating in industry and district heating and electricity generation. The paper is based on the Horizon
2020 project progresHEAT (www.progressheat.eu).
Degree of recognition: International
Links:
https://www.iaee.org/proceedings/article/15314

Related event

41st IAEE International Conference: Transforming Energy Markets
10/06/2018 → 13/06/2018
Activity: Talks and presentations › Conference presentations

Challenges of Data Availability for Analysing the Water-Energy Nexus
Period: 5 Feb 2018 → 7 Feb 2018
Morten Andreas Dahl Larsen (Other)
Martin Drews (Speaker)
Stefan Petrovic (Other)
Kenneth Bernard Karlsson (Other)
Department of Management Engineering
Systems Analysis
Degree of recognition: International

Related event

climate change and water 2018
05/02/2018 → 07/02/2018
Tours, France
Activity: Talks and presentations › Conference presentations

Challenges of Data Availability for Analysing the Water-Energy Nexus
Period: 13 Dec 2017
Morten Andreas Dahl Larsen (Speaker)
Martin Drews (Other)
Stefan Petrovic (Other)
Kenneth Bernard Karlsson (Other)
Department of Management Engineering
Systems Analysis
Degree of recognition: International

Related event

ETSAP water energy nexus workshop
13/12/2017 → 13/12/2017
Zürich, Switzerland
Activity: Talks and presentations › Conference presentations

Utilization of excess heat for district heating in the future Danish energy system
Period: 11 Dec 2017 → 12 Dec 2017
Stefan Petrovic (Speaker)
Fabian Bühler (Guest lecturer)
Mikkel Bosack Simonsen (Guest lecturer)
Department of Management Engineering
Systems Analysis
Department of Mechanical Engineering
Thermal Energy
Description
Significant part of the future heating demand in Denmark is expected to be supplied by district heating. Traditional district heating based on coal and natural gas CHPs cannot be a suitable solution in the future renewable energy system. However, low costs for the final consumers, low environmental impact, high efficiency and high reliability should be maintained. This paper analyses how much excess heat from industries and production of biofuels can contribute to district heating in the future.

The analysis is performed by TIMES-DK model until 2050. TIMES-DK is the only full-foresight optimisation model covering all sectors of the Danish energy system. The results show that around 65% of residential heating demand is supplied by district heating in 2050. The production of district heating is mainly based on waste incinerations and large-scale heat pumps. Excess heat from bio-refineries and industries contributes to the production of district heating with 15% and 10% in 2050, respectively and thus illustrate how important is to integrate power and heat, industrial and fuel production sectors. Excess heat can contribute to future production of district heating, but cannot be the dominating source. The results also show that the industrial excess heat is not equally important all over Denmark – it mostly contributes to production of district heating in Central areas of West Denmark. Around one half of excess heat can be sent directly to district heating networks, while the other half requires heat pumps. Even with heat pumps, utilisation of industrial excess heat remains cost-effective from the energy system perspective.

Even when excess heat from industries is disabled in model, district heating still supplies large portions of the heating demand, while the total system costs slightly increase. The price of excess heat and efficiency improvements in industries don't have a significant impact on the optimal solution.

Related event

12th sdewes Conference
04/10/2017 → 08/10/2017
Dubrovnik, Croatia
Activity: Talks and presentations › Conference presentations