High similarity between EEG from subcutaneous and proximate scalp electrodes in patients with temporal lobe epilepsy

Subcutaneous recording using electro encephalography (EEG) has the potential to enable ultra-long-term epilepsy monitoring in real-life conditions because it allows the patient increased mobility and discreteness. This study is the first to compare physiological and epileptiform EEG signals from subcutaneous and scalp EEG recordings in epilepsy patients. Four patients with probable or definite temporal lobe epilepsy were monitored with simultaneous scalp and subcutaneous EEG recordings. EEG recordings were compared by correlation and time-frequency analysis across an array of clinically relevant waveforms and patterns. We found high similarity between the subcutaneous EEG channels and nearby temporal scalp channels for most investigated electroencephalographic events. In particular, the temporal dynamics of one typical temporal lobe seizure in one patient were similar in scalp and subcutaneous recordings in regard to frequency distribution and morphology. Signal similarity is strongly related to the distance between the subcutaneous and scalp electrodes. On the basis of these limited data, we conclude that subcutaneous EEG recordings are very similar to scalp recordings in both time and time-frequency domains, if the distance between them is small. As many electroencephalographic events are local/ regional, the positioning of the subcutaneous electrodes should be considered carefully to reflect the relevant clinical question. The impact of implantation depth of the subcutaneous electrode on recording quality should be investigated further. NEW & NOTEWORTHY This study is the first publication comparing the detection of clinically relevant, pathological EEG features from a subcutaneous recording system designed for out-patient ultra-long-term use to gold standard scalp EEG recordings. Our study shows that subcutaneous channels are very similar to comparable scalp channels, but also point out some issues yet to be resolved.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, University of Copenhagen, UNEEG Medical A/S, Zealand University Hospital
Contributors: Weisdorf, S., Gangstad, S. W., Duun-Henriksen, J., Mosholt, K. S., Kjær, T. W.
Pages: 1451-1460
Publication date: 13 Sep 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Neurophysiology
Volume: 120
Issue number: 3
ISSN (Print): 0022-3077
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.51 SJR 1.65 SNIP 0.878
Web of Science (2017): Impact factor 2.502
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.4 SJR 1.674 SNIP 0.917
Web of Science (2016): Impact factor 2.396
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.96 SJR 2.198 SNIP 1.063
Semi-Supervised Sleep-Stage Scoring Based on Single Channel EEG

The field of automatic sleep stage classification based on EEG has enjoyed substantial attention during the last decade, which has resulted in several supervised classification algorithms with highly encouraging performance. Such supervised machine learning algorithms require large training sets that have been manually labelled, and are time- and resource-consuming to acquire. Here we present a semi-supervised approach that can learn to distinguish the sleep stages from a one-night data set where only a fraction has been manually labelled. We show that for fractions larger than 50%, our semi-supervised approach performs as good as a similar, fully-supervised model.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, Technical University of Denmark
Contributors: Munk, A. M., Olesen, K. V., Gangstad, S. W., Hansen, L. K.
Pages: 2551-2555
Host publication information
Title of host publication: Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
Publisher: IEEE
ISBN (Print): 9781538646588
Keywords: Sleep, Electroencephalography, Training, Brain modeling, Spectrogram, Gaussian mixture model, EEG, Semi-supervised learning, Sleep stage scoring, Non-negative matrix factorization, Generalizable Gaussian mixture model
DOIs: 10.1109/ICASSP.2018.8461982
Source: FindIt
Source-ID: 2439360301
Research output: Research - peer-review › Article in proceedings – Annual report year: 2018

Projects:

Ultra-long term subcutaneous EEG monitoring of brain function and disease
Gangstad, S. W., PhD Student
Hansen, L. K., Main Supervisor
Duun-Henriksen, J., Supervisor
Kjær, T. W., Supervisor
Industrial PhD
01/09/2016 → 23/05/2020
Award relations: Ultra-long term subcutaneous EEG monitoring of brain function and disease
Project: PhD