Research outputs:

Multi-stage generation of extreme ultraviolet dispersive waves by tapering gas-filled hollow-core anti-resonant fibers
Research output: Research - peer-review › Journal article – Annual report year: 2018

Optical fiber
Research output: Research › Patent – Annual report year: 2018

Curvature and position of nested tubes in hollow-core anti-resonant fibers
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2017

Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2017

Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2017

Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers
Research output: Research - peer-review › Journal article – Annual report year: 2017

Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers
Research output: Communication › Comment/debate – Annual report year: 2018

Toward single-mode UV to near-IR guidance using hollow-core antiresonant silica fiber
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2018

Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers
Habib, S. 2017 DTU Fotonik. 149 p.
Research output: Research › Ph.D. thesis – Annual report year: 2017

A new photonic crystal fiber design on the high negative ultra-flattened dispersion for both X and Y polarization modes
Research output: Research - peer-review › Journal article – Annual report year: 2016

Anisotropic anti-resonant elements gives broadband single-mode low-loss hollow-core fibers
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016
A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission
Research output: Research - peer-review › Journal article – Annual report year: 2016

A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime
Research output: Research - peer-review › Journal article – Annual report year: 2016

Antiresonant hollow core fiber with seven nested capillaries
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016

Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes
Research output: Research - peer-review › Journal article – Annual report year: 2016

Low loss mid-IR transmission bands using silica hollow-core anisotropic anti-resonant fibers
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016

Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements
Habib, S., Bang, O. & Bache, M. 2016 In : Optics Express. 24, 8, 8 p.
Research output: Research - peer-review › Journal article – Annual report year: 2016

Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance
Research output: Research - peer-review › Journal article – Annual report year: 2016

A Novel Highly Birefringent Photonic Crystal Fiber for THz Wave Guidance
Research output: Research - peer-review › Paper – Annual report year: 2015

Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime
Research output: Research - peer-review › Journal article – Annual report year: 2015

Extremely low-loss single-mode photonic crystal fiber in the terahertz regime
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016

Extremely Low Loss THz Guidance Using Kagome Lattice Porous Core Photonic Crystal Fiber
Research output: Research - peer-review › Article in proceedings – Annual report year: 2015

Highly birefringent photonic crystal fiber with ultra-flattened negative dispersion over S + C + L + U bands
Research output: Research - peer-review › Journal article – Annual report year: 2015
Improved Low-loss Hollow Core Anti-Resonant Silica Mid-IR Fibers
Research output: Research - peer-review › Article in proceedings – Annual report year: 2015

Low Loss Double-clad Hollow Core Anti-Resonant Fibers in the Mid-IR
Research output: Research - peer-review › Article in proceedings – Annual report year: 2015

Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes
Habib, S., Bang, O. & Bache, M. 2015 In : Optics Express. 23, 13, p. 17394-17406
Research output: Research - peer-review › Journal article – Annual report year: 2015

Low-loss rotated porous core hexagonal single-mode fiber in THz regime
Research output: Research - peer-review › Journal article – Annual report year: 2015

Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance
Research output: Research - peer-review › Journal article – Annual report year: 2015

Projects:

Ultrafast mid-IR nonlinear optics in gas-filled hollow-core photonic crystal fibers
Habib, S., Bache, M., Bang, O., Lægsgaard, J., Biancalana, F. & Joly, N.
Institut stipendie (DTU)
15/04/2014 → 14/06/2017
Project: PhD

Ultrafast mid-IR nonlinear optics in gas-filled hollow-core photonic crystal fibers
Habib, S.
15/04/2014 → 14/04/2017
Project: Research

Activities:

CREOL, The College of Optics and Photonics
Habib, S. (Visiting researcher)
1 May 2016 → 31 Aug 2016
Activity: Visiting an external institution › Visiting another research institution