Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up
Publication: Research - peer-review › Journal article – Annual report year: 2016

Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor
Publication: Research - peer-review › Journal article – Annual report year: 2017

Hybridized reactive iron-containing nano-materials for water purification
Publication: Research › Ph.D. thesis – Annual report year: 2016

Nanoscale zero-valent iron impregnation of covalent organic polymer grafted activated carbon for water treatment
Publication: Research - peer-review › Conference abstract in proceedings – Annual report year: 2016

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon
Publication: Research - peer-review › Journal article – Annual report year: 2016

Activated carbon enhancement with covalent organic polymers: An innovative material for application in water purification and carbon dioxide capture
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2015

Covalent organic polymer functionalized activated carbon: A novel material for water contaminant removal and CO2 capture
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2015

Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials
Publication: Research - peer-review › Journal article – Annual report year: 2015

Microtiter plate based colorimetric assay for characterization of dehalogenation activity of GAC/Fe0 composite
Nano-enabled environmental products and technologies - opportunities and drawbacks: Miljøprojekt nr. 1803, 2015
Møller Christensen, F., Brinch, A., Kjelholt, J., Mines, P. D., Schumacher, N., Højbjerg Jørgensen, T. & Hummelshøj, M.
2015 Copenhagen K: Danish Environmental Protection Agency. 89 p.

Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal

Simple analytical solutions to quantify colloidal stability and reducing reactivity of nanoscale zero-valent iron

Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol

Determination of dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol based colorimetric assay

Highly stable and reactive nano zero-valent-iron synthesis with Mg-aminoclay and aging characteristics for practical application

Investigation of washing and storage strategy on aging Of Mg-aminoclay (MgAC) coated nanoscale zero-valent iron (nZVI) particles

Mg-aminoclay as stabilizer for synthesizing highly stable and reactive nZVI for decontamination

Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination
Publication: Research - peer-review › Journal article – Annual report year: 2014

Nano-Sized Zero Valent Iron and Covalent Organic Polymer Composites for Azo Dye Remediation
Publication: Research - peer-review › Conference abstract in proceedings – Annual report year: 2015

Projects:

Reactive nanomaterials for water purification
15/12/2012 → 22/12/2016
Project: PhD

Prizes:

Nanoscale zero-valent iron impregnation of covalent organic polymer grafted activated carbon for water treatment: 11th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials (ICEENN 2016)
Paul D. Mines (Recipient), 18 Aug 2016
Prize: Prizes, scholarships, distinctions