Multi-output bus travel time prediction with convolutional LSTM neural network

Accurate and reliable travel time predictions in public transport networks are essential for delivering an attractive service that is able to compete with other modes of transport in urban areas. The traditional application of this information, where arrival and departure predictions are displayed on digital boards, is highly visible in the city landscape of most modern metropolises. More recently, the same information has become critical as input for smart-phone trip planners in order to alert passengers about unreachable connections, alternative route choices and prolonged travel times. More sophisticated Intelligent Transport Systems (ITS) include the predictions of connection assurance, i.e. an expert system that will decide to hold services to enable passenger exchange, in case one of the services is delayed up to a certain level. In order to operate such systems, and to ensure the confidence of passengers in the systems, the information provided must be accurate and reliable. Traditional methods have trouble with this as congestion, and thus travel time variability, increases in cities, consequently making travel time predictions in urban areas a non-trivial task. This paper presents a system for bus travel time prediction that leverages the non-static spatio-temporal correlations present in urban bus networks, allowing the discovery of complex patterns not captured by traditional methods. The underlying model is a multi-output, multi-time-step, deep neural network that uses a combination of convolutional and long short-term memory (LSTM) layers. The method is empirically evaluated and compared to other popular approaches for link travel time prediction and currently available services, including the currently deployed model at Movia, the regional public transport authority in Greater Copenhagen. We find that the proposed model significantly outperforms all the other methods we compare with, and is able to detect small irregular peaks in bus travel times very quickly.
Logical Entity Level Sentiment Analysis

We present a formal logical approach using a combinatory categorial grammar for entity level sentiment analysis that utilizes machine learning techniques for efficient syntactical tagging and performs a deep structural analysis of the syntactical properties of texts in order to yield precise results. The method should be seen as an alternative to pure machine learning methods for sentiment analysis, which are argued to have high difficulties in capturing long distance dependencies, and can be dependent on significant amount of domain specific training data. The results show that the method yields high correctness, but further investment is needed in order to improve its robustness.

General information

Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Department of Management Engineering, Transport Modelling, Algorithms and Logic, Technical University of Denmark
Contributors: Petersen, N. C., Villadsen, J.
Pages: 54-71
Publication date: 2017

Host publication information

Title of host publication: International Conference on Formal Grammar
Publisher: Springer
Editors: Foret, A., Muskens, R., Pogodalla, S.
(Lecture Notes in Computer Science, Vol. 10686).

Projects:

Multi-model bus Arrival Predictinwith Intelligent Handling of Uncertainties
Petersen, N. C., PhD Student, Department of Management Engineering
Pereira, F. C., Main Supervisor
Heckscher, A., Supervisor
Ansat eksternt
01/02/2017 → 30/01/2021
Award relations: Multi-model bus Arrival Predictinwith Intelligent Handling of Uncertainties
Project: PhD