Nicky Ehrlich - DTU Orbit (21/11/2018)

Ehrlich, Nicky
nehr@kt.dtu.dk

Department of Chemical and Biochemical Engineering - Research coordinator / Fundraiser

Administration

Research outputs:

How to Characterize Individual Nano-Size Liposomes with Simple Self-Calibrating Fluorescence Microscopy
Research output: Research - peer-review › Journal article – Annual report year: 2018

How To Characterize Individual Nano-Size Liposomes With Simple Self-Calibrating Fluorescence Microscopy
Mortensen, K. I., Tassone, C., Ehrlich, N., Andresen, T. L. & Flyvbjerg, H. 2018
Research output: Research - peer-review › Conference abstract for conference – Annual report year: 2018

A 3D human co-culture microtissue model for nanoparticle effect and uptake studies at the placental barrier
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2017

A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment
Research output: Research - peer-review › Journal article – Annual report year: 2016

Toxicity of Pristine and Aged Coated Copper Oxide Engineered Nanomaterials (CuO ENMs) to the Earthworm E. fetida
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2016

Single-vesicle detection and analysis of peptide-induced membrane permeabilization
Research output: Research - peer-review › Journal article – Annual report year: 2015

Development of dispersion procedures for surface-functionalized CuO nanoparticles to use in large-scale toxicity studies
Research output: Research - peer-review › Conference abstract for conference – Annual report year: 2014

Dispersion and characterization of surface-functionalized CuO nanoparticles for toxicity testing.
Research output: Research - peer-review › Poster – Annual report year: 2014

Quantitative single-vesicle analysis of antimicrobial peptide-induced leakage
Research output: Research - peer-review › Conference abstract in journal – Annual report year: 2013

Single Enzyme Studies Reveal the Existence of Discrete Functional States for Monomeric Enzymes and How They Are "Selected" upon Allosteric Regulation
Research output: Research - peer-review › Journal article – Annual report year: 2012