Research outputs:

Nitrate removal from aquaculture effluents using woodchip bioreactors improved by adding sulfur granules and crushed seashells
Research output: Research - peer-review › Journal article – Annual report year: 2018

Nutrient removal in a constructed wetland treating aquaculture effluent at short hydraulic retention time
Research output: Research - peer-review › Journal article – Annual report year: 2018

First experiences from full-scale denitrifying woodchip bioreactors operated end-of-pipe at commercial RAS
Research output: Research › Conference abstract in proceedings – Annual report year: 2017

Particle surface area and bacterial activity in recirculating aquaculture systems
Research output: Research - peer-review › Journal article – Annual report year: 2017

New approaches to improve the removal of dissolved organic matter and nitrogen in aquaculture

Optimizing nitrate removal in woodchip beds treating aquaculture effluents
Research output: Research - peer-review › Journal article – Annual report year: 2016

Start-up performance of a woodchip bioreactor operated end-of-pipe at a commercial fish farm—A case study
von Ahnen, M., Pedersen, P. B. & Dalsgaard, A. J. T. 2016 In : Aquacultural Engineering. 74, p. 96-104
Research output: Research - peer-review › Journal article – Annual report year: 2016

Degradation of urea, ammonia and nitrite in moving bed biofilters operated at different feed loadings
Research output: Research - peer-review › Journal article – Annual report year: 2015

End-of-pipe removal of nitrogen using woodchip beds
Research output: Research › Conference abstract in proceedings – Annual report year: 2015

Room for all? - particulate surface area and bacterial activity in RAS
Removal of urea, ammonium and nitrite in moving bed biofilters operated at different loadings

Projects:

Future growth in sustainable, resilient and climate friendly organic and conventional European aquaculture (FutureEUAqua) (39494)
Jokumsen, A., Pedersen, P. B., Pedersen, L., Dalsgaard, A. J. T. & von Ahnen, M.
01/10/2018 → 30/09/2022
Project: Research

Green switch in Danish Aquaculture by changeover to recirculation (GODAOR) (39462)
Jokumsen, A., Pedersen, P. B., Pedersen, L., Dalsgaard, A. J. T. & von Ahnen, M.
01/07/2017 → 30/06/2021
Project: Research

Design and operation optimization of constructed wetlands at rainbow trout farms (39430)
Pedersen, P. B., Dalsgaard, A. J. T. & von Ahnen, M.
06/10/2016 → 11/01/2019
Project: Research

Environmentally effective nitrogen removal in fish farming using sludge hydrolysis (wiN-wiN) (39119)
01/08/2013 → 31/12/2016
Project: Research

Traditional trout farms (39095)
Dalsgaard, A. J. T., von Ahnen, M. & Pedersen, P. B.
05/07/2012 → 01/06/2016
Project: Research

IT-solutions for environmental control of trout farms (39094)
Pedersen, P. B., Dalsgaard, A. J. T. & von Ahnen, M.
05/07/2012 → 01/05/2015
Project: Research

New approaches and methods to improve the removal of dissolved nutrients in aquaculture
von Ahnen, M., Dalsgaard, A. J. T., Pedersen, P. B., Jokumsen, A., Healy, M. G. & Schulz, C.
1/3 DTU-stip, 2/3 FUR/andet
01/04/2013 → 30/06/2016
Project: PhD

Development of sustainable technologies and modeling tools in aquaculture aiming at increasing overall production (UDTÆNK) (39030)
09/07/2012 → 31/05/2015
Project: Research