Research outputs:

Effects of Gliadin consumption on the Intestinal Microbiota and Metabolic Homeostasis in Mice Fed a High-fat Diet
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review

Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review

Gliadin affects glucose homeostasis and intestinal metagenome in C57BL6 mice fed a high-fat diet
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2015 › Research › peer-review

Gliadin Intake alters intestinal microbiota, glucose and lipid metabolism, and adipose tissue and liver immune cells
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review

Obesity-associated fecal microbiota from human modulates body mass and metabolites in mice
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2015 › Research › peer-review

The effects of gliadin on urine metabolome in mice
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2015 › Research › peer-review

Gliadin affects glucose homeostasis and intestinal metagenome in C57BL/6 mice fed a high-fat diet
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2014 › Research › peer-review

Projects:

Microbiota and Metabolic Diseases - Dietary intervention studies in animal models
Project: PhD

3G Center: Center for Gut Microbiota, Metabolic disorders, and Grain/Fibre-based Diets (Guts, Grains and Greens)
Project: Research

Activities:

Obesity-associated fecal microbiota from human modulates body mass and metabolites in mice
Activity: Talks and presentations › Conference presentations

Gliadin Affects Glucose Homeostasis and Intestinal Metagenome in C57BL/6 Mice Fed a High-Fat Diet
Activity: Talks and presentations › Conference presentations