A Major Mycobacterium tuberculosis outbreak caused by one specific genotype in a low-incidence country: Exploring gene profile virulence explanations

Denmark, a tuberculosis low burden country, still experiences significant active Mycobacterium tuberculosis (Mtb) transmission, especially with one specific genotype named Cluster 2/1112-15 (C2), the most prevalent lineage in Scandinavia. In addition to environmental factors, antibiotic resistance, and human genetics, there is increasing evidence that Mtb strain variation plays a role for the outcome of infection and disease. In this study, we explore the reasons for the success of the C2 genotype by analysing strain specific polymorphisms identified through whole genome sequencing of all C2 isolates identified in Denmark between 1992 and 2014 (n = 952), and the demographic distribution of C2. Of 234 non-synonymous (NS) monomorphic SNPs found in C2 in comparison with Mtb reference strain H37Rv, 23 were in genes previously reported to be involved in Mtb virulence. We show that the genotype is readily transmitted to different ethnicities and is also found outside Denmark. Our data suggest that strain specific virulence factor variations are important for the success of the C2 genotype. These factors, likely in combination with poor TB control, seem to be the main drivers of C2 success.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology, Department of Biotechnology and Biomedicine, Section for Microbial and Chemical Ecology, Infection Microbiology, Statens Serum Institut, University of Southern Denmark
Number of pages: 8
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Scientific Reports
Volume: 8
Article number: 11869
ISSN (Print): 2045-2322
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.36 SJR 1.533 SNIP 1.245
Web of Science (2017): Impact factor 4.122
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.63 SJR 1.692 SNIP 1.354
Web of Science (2016): Impact factor 4.259
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.3 SJR 2.034 SNIP 1.597
Web of Science (2015): Impact factor 5.228
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.75 SJR 2.163 SNIP 1.554
Web of Science (2014): Impact factor 5.578
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.06 SJR 1.998 SNIP 1.57
Web of Science (2013): Impact factor 5.078
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.44 SJR 1.531 SNIP 0.962
Web of Science (2012): Impact factor 2.927
HldE Is Important for Virulence Phenotypes in Enterotoxigenic Escherichia coli

Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrheal illness in third world countries and it especially affects children and travelers visiting these regions. ETEC causes disease by adhering tightly to the epithelial cells in a concerted effort by adhesins, flagella, and other virulence-factors. When attached ETEC secretes toxins targeting the small intestine host-cells, which ultimately leads to osmotic diarrhea. HldE is a bifunctional protein that catalyzes the nucleotide-activated heptose precursors used in the biosynthesis of lipopolysaccharide (LPS) and in post-translational protein glycosylation. Both mechanisms have been linked to ETEC virulence: Lipopolysaccharide (LPS) is a major component of the bacterial outer membrane and is needed for transport of heat-labile toxins to the host cells, and ETEC glycoproteins have been shown to play an important role for bacterial adhesion to host epithelia. Here, we report that HldE plays an important role for ETEC virulence. Deletion of hldE resulted in markedly reduced binding to the human intestinal cells due to reduced expression of colonization factor CFA/I on the bacterial surface. Deletion of hldE also affected ETEC motility in a flagella-dependent fashion. Expression of both colonization factors and flagella was inhibited at the level of transcription. In addition, the hldE mutant displayed altered growth, increased biofilm formation and clumping in minimal growth medium. Investigation of an orthogonal LPS-deficient mutant combined with mass spectrometric analysis of protein glycosylation indicated that HldE exerts its role on ETEC virulence both through protein glycosylation and correct LPS configuration. These results place HldE as an attractive target for the development of future antimicrobial therapeutics.
**Immense diversity found in secondary metabolite gene clusters in filamentous fungi and bacteria using comparative genomics**

Secondary metabolism in microorganisms is defined as non-life essential metabolism such as the production of mycotoxins and antibiotic compounds. This definition has to some extent been obscured as it is hard to define what is essential for the life of a microorganism in natural environments. Who is to say that the secondary metabolism penicillin produced by species of Penicillium is not essential for the life of the fungi. The compounds produced in these reactions are possible antimicrobial, biofuels, food spoilers and other important or valuable compounds. Secondary metabolism is, therefore, the subject of great curiosity for both biological and financial reasons. At the Center for Microbial Secondary Metabolites (CeMiSt) we are interested in the natural role of secondary metabolites and their response to other organisms.

Here we present the analysis of four different sets of organisms that are of interest in the study of natural environments like soil and food products. The number of known secondary metabolite compounds far exceed the number of characterized genes involved in these pathways and the effort required to elucidate the connection between metabolites and genes require time-consuming and expensive chemical characterization. Because of the benefits and challenges in this elucidation much effort has been given to the computational prediction of genes involved in secondary metabolism, with the most prominent software being AntiSMASH (bacteria and fungi) and SMURF (fungi). These methods provide valuable knowledge in the selection of gene targets for further analysis and can increase the speed of gene to compound association tremendously. Although taxonomy groups living organism into specific groups at different levels, genera, species and so on, the diversity within each group can vary. We investigated the general conservation of protein function, using protein sequences, by an all against all BLASTp comparison. The fraction, as a function of the total number of proteins in a species, of shared proteins was then calculated and presented in a matrix in Figure 2. The cutoff for significant hits is defined as a reciprocal BLAST [Altschul (1990)] hit with percent identity of over 50% and alignment coverage percentage sum (query and hit coverage) over 130%. The diagonal line is a self comparison, and is therefore always 100% (purple). We see that the overall diversity between species is much larger for Bacilli (20-40%) than for Pseudomonas (50-70%). The Penicillium are as diverse as the Bacillus while the Aspergilli are the most divers of all the sets.
Intergenic evolution during host adaptation increases expression of the metallophore pseudopaline in *Pseudomonas aeruginosa*

Regulating intracellular levels of biological metal ions is essential for all bacterial species, as they are needed for virulence and a range of metabolic processes. Zinc is the second most abundant metal ion in *Pseudomonas aeruginosa*, but little is known about its regulation. Recent studies have identified a novel operon, zrmABCD (also called cntOLMI), encoding a metallophore system (pseudopaline) involved in zinc acquisition. Expression of this operon has been implicated in human infections and is regulated by the transcriptional regulator Zur (Zn\(^{2+}\) uptake regulator). In this study, we show that the intergenic promoter region in front of zrmABCD is a target for recurrent adaptive mutations during chronic infection of cystic fibrosis (CF) patients. We characterize the inter- and intraclonal sequence polymorphisms found in the promoter region of the metallophore system and find that most alterations increase promoter activity. One of the evolved promoters displays a more than 10-fold increase compared to the ancestral strain due to the combined effect of an altered binding site of Zur and changes to the RpoD-binding motif. This specific evolved promoter responds differently to changes in metal ion concentrations in chelated medium. We hereby provide the second example of adaptive mutations targeting intergenic regions that affect metal ion uptake systems during CF infections, and the first involving zinc uptake. Our results suggest that the scarcity of metal ions (including iron and zinc) is an important evolutionary driver in CF host adaptation.
The identification and study of adaptive intergenic mutations in bacterial pathogens

General information
State: Published
Organisations: Section for Microbial and Chemical Ecology, Infection Microbiology, Department of Biotechnology and Biomedicine, Technical University of Denmark
Contributors: Sazinas, P., Anbo, M., Jelsbak, L.
Pages: 67-67
Publication date: 2018

Host publication information
Title of host publication: The Danish Microbiological Society Annual Congress 2018 - programme & abstracts
Place of publication: Copenhagen, Denmark
Publisher: Danish Microbiological Society

Transcriptomic profiling of interacting nasal staphylococci species reveals global changes in gene and non-coding RNA expression

Interspecies interactions between bacterial pathogens and the commensal microbiota can influence disease outcome. In the nasal cavities, Staphylococcus epidermidis has been shown to be a determining factor for Staphylococcus aureus colonization and biofilm formation. However, the interaction between S. epidermidis and S. aureus has mainly been described by phenotypic analysis, and little is known about how this interaction modulates gene expression. This study aimed to determine the interactome of nasal S. aureus and S. epidermidis isolates to understand the molecular effect of interaction. After whole-genome sequencing of two nasal staphylococcal isolates, an agar-based RNA sequencing setup was utilized to identify interaction-induced transcriptional alterations in surface-associated populations. Our results revealed differential expression of several virulence genes in both species. We also identified putative non-coding RNAs (ncRNAs) and, interestingly, detected a putative ncRNA transcribed antisense to esp, the serine protease of S. epidermidis, that has previously been shown to inhibit nasal colonization of S. aureus. In our study, the gene encoding Esp and the antisense ncRNA are both downregulated during interaction with S. aureus. Our findings contribute to a better understanding of pathogen physiology in the context of interactions with the commensal microbiota, and may provide targets for future therapeutics.

General information
State: Published
Organisations: Department of Biotechnology and Biomedicine, Infection Microbiology, University of Leicester, Statens Serum Institut, Technical University of Denmark
Contributors: Hermansen, G. M. M., Sazinas, P., Kofod, D., Millard, A., Andersen, P. S., Jelsbak, L.
Number of pages: 9
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Fems Microbiology Letters
Volume: 365
Issue number: 5
Article number: fny004
ISSN (Print): 0378-1097
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.8 SJR 0.79 SNIP 0.58
Web of Science (2017): Impact factor 11.392
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.76 SJR 0.842 SNIP 0.615
Original language: English
Keywords: Staphylococcus aureus, Staphylococcus epidermidis, Non-coding RNA, Pathogen-commensal interaction, Transcriptome, RNA-seq
Electronic versions:
Application of RNA-seq and Bioimaging Methods to Study Microbe-Microbe Interactions and Their Effects on Biofilm Formation and Gene Expression

Complex interactions between pathogenic bacteria, the microbiota, and the host can modify pathogen physiology and behavior. We describe two different experimental approaches to study microbe-microbe interactions in in vitro systems containing surface-associated microbial populations. One method is the application of RNA sequencing (RNA-seq) to determine the transcriptional changes in pathogenic bacteria in response to microbial interspecies interactions. The other method combines flow cell devices for bacterial cultivation and growth with high-resolution bioimaging to analyze the microscale structural organization of interacting microbial populations within mixed-species biofilms.

General information
State: Published
Organisations: Department of Biotechnology and Biomedicine, Infection Microbiology
Contributors: Amador Hierro, C. I., Sternberg, C., Jelsbak, L.
Number of pages: 28
Pages: 131-158
Publication date: 2017

Host publication information
Title of host publication: Host-Pathogen Interactions
Volume: 1734
Publisher: Springer
Editors: López-Baena, F. J., Medina, C.
ISBN (Print): 978-1-4939-7603-4
ISBN (Electronic): 978-1-4939-7604-1
Keywords: Bacterial pathogens, Bacterial physiology, Biofilms, Interspecies interactions, Microbe–microbe interactions, RNA sequencing
DOIs:
10.1007/978-1-4939-7604-1_12
Source: FindIt
Source-ID: 2394559291
Research output: Research - peer-review › Book chapter – Annual report year: 2017

Genomic epidemiology of a major Mycobacterium tuberculosis outbreak: Retrospective cohort study in a low incidence setting using sparse time-series sampling

Since 1992, Denmark has documented the largest outbreak of tuberculosis in Scandinavia ascribed to a single genotype, termed ‘C2/1112-15’. As of spring 2017, the International Reference Laboratory of Mycobacteriology in Copenhagen has collected and identified isolates from more than a thousand cases belonging to this outbreak via routine MIRU-VNTR typing. Here, we present a retrospective analysis of the C2/1112-15 dataset, based on whole-genome data from a sparse time-series consisting of five randomly selected isolates from each of the 23 years. Even if these data are derived from only 12% of the collected isolates, we have been able to extract important key information, such as mutation rate, conserved single-nucleotide polymorphisms to identify discrete transmission chains, as well as the possible historical origins of the outbreak.

General information
State: Published
Organisations: Department of Systems Biology, Department of Biotechnology and Biomedicine, Infection Microbiology, Statens Serum Institut, University of Southern Denmark
Number of pages: 19
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Infectious Diseases
Volume: 216
Issue number: 3
ISSN (Print): 0022-1899
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.47 SJR 3.302 SNIP 1.427
Web of Science (2017): Impact factor 5.186
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.86 SJR 3.931 SNIP 1.62
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.88 SJR 3.958 SNIP 1.711
Web of Science (2015): Impact factor 6.344
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.84 SJR 3.836 SNIP 1.74
Web of Science (2014): Impact factor 5.997
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.21 SJR 3.64 SNIP 1.687
Web of Science (2013): Impact factor 5.778
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.43 SJR 3.361 SNIP 1.702
Web of Science (2012): Impact factor 5.848
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.79 SJR 3.559 SNIP 1.934
Web of Science (2011): Impact factor 6.41
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 3.482 SNIP 1.772
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 3.121 SNIP 1.768
BFI (2008): BFI-level 2
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.059 SNIP 1.784
Scopus rating (2006): SJR 3.004 SNIP 1.677
Scopus rating (2005): SJR 2.695 SNIP 1.686
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.58 SNIP 1.691
Scopus rating (2003): SJR 2.25 SNIP 1.665
Scopus rating (2002): SJR 2.361 SNIP 1.577
Scopus rating (2001): SJR 2.457 SNIP 1.581
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.257 SNIP 1.757
Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm⁻¹ in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device.
A Bacteriophage-Acquired O-Antigen Polymerase (Wzyβ) from P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyα

*Pseudomonas aeruginosa* is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a serotype converting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3′ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphatase activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272, and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the *P. aeruginosa* host to avoid self-inhibition during serotype conversion.
Antibiotic combination therapy can select for broad-spectrum multidrug resistance in *Pseudomonas aeruginosa*

Combination therapy with several antibiotics is one strategy that has been applied in order to limit the spread of antimicrobial resistance. We compared the de novo evolution of resistance during combination therapy with the β-lactam ceftazidime and the fluoroquinolone ciprofloxacin with the resistance evolved after single-drug exposure. Combination therapy selected for mutants that displayed broad-spectrum resistance, and a major resistance mechanism was mutational inactivation of the repressor gene *mexR* that regulates the multidrug efflux operon *mexAB–oprM*. Deregulation of this operon led to a broad-spectrum resistance phenotype that decreased susceptibility to the combination of drugs applied during selection as well as to unrelated antibiotic classes. Mutants isolated after single-drug exposure displayed narrow-spectrum resistance and carried mutations in the MexCD–OprJ efflux pump regulator gene *nfxB* conferring ciprofloxacin resistance, or in the gene encoding the non-essential penicillin-binding protein DacB conferring ceftazidime resistance. Reconstruction of resistance mutations by allelic replacement and in vitro fitness assays revealed that in contrast to single antibiotic use, combination therapy consistently selected for mutants with enhanced fitness expressing broad-spectrum resistance mechanisms.

**General information**

**State:** Published

**Organisations:** National Veterinary Institute, Section for Bacteriology, Pathology and Parasitology, Department of Systems Biology, Infection Microbiology, Infection Microbiology, University of Copenhagen, Righospitalet, Technical University of Denmark

**Contributors:** Vestergaard, M., Paulander, W., Marvig, R. L., Clasen, J., Jochumsen, N., Molin, S., Jelsbak, L., Ingmer, H., Folkesson, S. A.

**Number of pages:** 8

**Pages:** 48-55

**Publication date:** 2016

**Peer-reviewed:** Yes

**Publication information**

**Journal:** International Journal of Antimicrobial Agents

**Volume:** 47

**ISSN (Print):** 0924-8579

**Ratings:**

BFI (2019): BFI-level 1

Web of Science (2019): Indexed yes

BFI (2018): BFI-level 1

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 1

Scopus rating (2017): CiteScore 3.54 SJR 1.699 SNIP 1.397

Web of Science (2017): Impact factor 4.253

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 3.38 SJR 1.608 SNIP 1.316

Web of Science (2016): Impact factor 4.307

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 1

Scopus rating (2015): CiteScore 3.45 SJR 1.703 SNIP 1.541

Web of Science (2015): Impact factor 4.097

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1

Scopus rating (2014): CiteScore 3.45 SJR 1.477 SNIP 1.64

Web of Science (2014): Impact factor 4.296

BFI (2013): BFI-level 1

Scopus rating (2013): CiteScore 3.63 SJR 1.706 SNIP 1.566

Web of Science (2013): Impact factor 4.259

ISI indexed (2013): ISI indexed yes

Web of Science (2013): Indexed yes
Application of WGS data for O-specific antigen analysis and in silico serotyping of Pseudomonas aeruginosa isolates

Accurate typing methods are required for efficient infection control. The emergence of whole genome sequencing (WGS) technologies has enabled the development of genomics-based methods applicable for routine typing and surveillance of bacterial pathogens. In this study, we developed the Pseudomonas aeruginosa serotyper (PAs) program, which enabled in silico serotyping of P. aeruginosa isolates using WGS data. PAs has been made publically available as a web-service, and aptly facilitate high-throughput serotyping analysis. The program overcomes critical issues such as the loss of in vitro typeability often associated with P. aeruginosa isolates from chronic infections, and quickly determines the serogroup of an isolate based on the sequence of the O-specific antigen (OSA) gene cluster. Here, PAs analysis of 1649 genomes resulted in successful serogroup assignments in 99.27% of the cases. This frequency is rarely achievable by conventional serotyping methods. The limited number of non-typeable isolates found using PAs was the result of either complete absence of OSA genes in the genomes or the artifact of genomic misassembly. With PAs, P. aeruginosa serotype data can be obtained from WGS information alone. PAs is a highly efficient alternative to conventional serotyping methods in relation to outbreak surveillance of serotype O12 and other high-risk clones, while maintaining backward compatibility to historical serotype data.

General information
State: Published
Organisations: Department of Systems Biology, National Food Institute, Infection Microbiology, Center for Biological Sequence Analysis, University of Guelph
Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440

Background

Although a transition toward sustainable production of chemicals is needed, the physiochemical properties of certain biochemicals such as biosurfactants make them challenging to produce in conventional bioreactor systems. Alternative production platforms such as surface-attached biofilm populations could potentially overcome these challenges. Rhamnolipids are a group of biosurfactants highly relevant for industrial applications. However, they are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa using hydrophobic substrates such as plant oils. As the biosynthesis is tightly regulated in P. aeruginosa a heterologous production of rhamnolipids in a safe organism can relieve the production from many of these limitations and alternative substrates could be used.

Results

In the present study, heterologous production of biosurfactants was investigated using rhamnolipids as the model compound in biofilm encased Pseudomonas putida KT2440. The rhlAB operon from P. aeruginosa was introduced into P. putida to produce mono-rhamnolipids. A synthetic promoter library was used in order to bypass the normal regulation of rhamnolipid synthesis and to provide varying expression levels of the rhlAB operon resulting in different levels of rhamnolipid production. Biosynthesis of rhamnolipids in P. putida decreased bacterial growth rate but stimulated biofilm formation by enhancing cell motility. Continuous rhamnolipid production in a biofilm was achieved using flow cell technology. Quantitative and structural investigations of the produced rhamnolipids were made by ultra performance liquid chromatography combined with high resolution mass spectrometry (HRMS) and tandem HRMS. The predominant rhamnolipid congener produced by the heterologous P. putida biofilm was mono-rhamnolipid with two C10 fatty acids.

Conclusion

This study shows a successful application of synthetic promoter library in P. putida KT2440 and a heterologous biosynthesis of rhamnolipids in biofilm encased cells without hampering biofilm capabilities. These findings expands the possibilities of cultivation setups and paves the way for employing biofilm flow systems as production platforms for biochemicals, which as a consequence of physiochemical properties are troublesome to produce in conventional fermenter setups, or for production of compounds which are inhibitory or toxic to the production organisms.

General information

State: Published
Organisations: Department of Systems Biology, Infection Microbiology, Metabolomics Platform, National Food Institute, Research group for Microbial Biotechnology and Biorefining, National Veterinary Institute, Section for Bacteriology, Pathology and Parasitology
Contributors: Wigneswaran, V., Nielsen, K. F., Sternberg, C., Jensen, P. R., Folkesson, A., Jelsbak, L.
Number of pages: 13
Publication date: 2016
Peer-reviewed: Yes

**Publication information**
Journal: Microbial Cell Factories
Volume: 15
Issue number: 181
ISSN (Print): 1475-2859

**Ratings:**
- BFI (2019): BFI-level 1
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 4.2 SJR 1.443 SNIP 1.227
- Web of Science (2017): Impact factor 3.831
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 3.92 SJR 1.481 SNIP 1.228
- Web of Science (2016): Impact factor 3.681
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 4.08 SJR 1.563 SNIP 1.265
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 4.25 SJR 1.757 SNIP 1.52
- Web of Science (2014): Impact factor 4.221
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 4.22 SJR 1.777 SNIP 1.483
- Web of Science (2013): Impact factor 4.25
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 3.69 SJR 1.43 SNIP 1.363
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 3.91 SJR 1.427 SNIP 1.386
- Web of Science (2011): Impact factor 3.552
- ISI indexed (2011): ISI indexed yes
- Web of Science (2011): Indexed yes
- BFI (2010): BFI-level 1
- Scopus rating (2010): SJR 1.627 SNIP 1.481
- Web of Science (2010): Indexed yes
- BFI (2009): BFI-level 1
- Scopus rating (2009): SJR 1.305 SNIP 1.288
- Web of Science (2009): Indexed yes
- BFI (2008): BFI-level 1
- Scopus rating (2008): SJR 1.367 SNIP 1.371
Curbing the development and spread of 'high risk' bacterial pathogens

MDR (multi-drug Resistant) og XDR (Extensively drug resistant) Pseudomonas aeruginosa clone types spread at alarming rates in hospital environments, and there is a clear need to limit the development and spread of these 'high risk' bacterial pathogens. I will describe our recent efforts to use genomic information to determine the mechanism by which these clone types evolve and spread, and our work on the development a web-based tool that can make identification of high risk clones faster in the clinical microbiology hospital departments. The rationale behind the development of this tool is that faster diagnosis will help to improve containment of the pathogens.

Evolution of metabolic divergence in *Pseudomonas aeruginosa* during long-term infection facilitates a proto-cooperative interspecies interaction

The effect of polymicrobial interactions on pathogen physiology and how it can act either to limit pathogen colonization or to potentiate pathogen expansion and virulence are not well understood. *Pseudomonas aeruginosa* and *Staphylococcus aureus* are opportunistic pathogens commonly found together in polymicrobial human infections. However, we have previously shown that the interactions between these two bacterial species are strain dependent. Whereas *P. aeruginosa* PAO1, a commonly used laboratory strain, effectively suppressed *S. aureus* growth, we observed a commensal-like interaction between the human host-adapted strain, DK2-P2M24-2003, and *S. aureus*. In this study, characterization by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry (IMS) and mass spectral (MS) molecular networking revealed a significant metabolic divergence between *P. aeruginosa* PAO1 and DK2-P2M24-2003, which comprised several virulence factors and signaling 4-hydroxy-2-alkylquinoline (HAQ) molecules. Strikingly, a further modulation of the HAQ profile was observed in DK2-P2M24-2003 during interaction with *S. aureus*, resulting in an area with thickened colony morphology at the *P. aeruginosa*–*S. aureus* interface. In addition, we found an HAQ-mediated protection of *S. aureus* by DK2-P2M24-2003 from the killing effect of tobramycin. Our findings suggest a model where the metabolic divergence manifested in human host-adapted *P. aeruginosa* is further modulated during interaction with *S. aureus* and facilitate a proto-cooperative *P. aeruginosa*–*S. aureus* relationship.
Pseudomonas aeruginosa is an important opportunistic pathogen associated with chronic pulmonary infections and mortality in cystic fibrosis (CF) patients. Here, we present the complete genome sequence of stable mucoid P. aeruginosa strain DK1-NH57388A, a CF isolate which has previously been used to establish chronic lung infections in an animal model.
Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking

The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data.
Substantial molecular evolution and mutation rates in prolonged latent *Mycobacterium tuberculosis* infection in humans

The genome of *Mycobacterium tuberculosis* (Mtb) of latently infected individuals may hold the key to understanding the processes that lead to reactivation and progression to clinical disease. We report here analysis of pairs of Mtb isolates from putative prolonged latent TB cases. We identified two confirmed cases, and used whole genome sequencing to investigate the mutational processes that occur over decades in latent Mtb. We found an estimated mutation rate between 0.2 and 0.3 over 33 years, suggesting that latent Mtb accumulates mutations at rates similar to observations from cases of active disease.
The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions

Colistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole-genome sequencing of colistin-resistant Pseudomonas aeruginosa isolates from cystic fibrosis patients to reconstruct the molecular evolutionary pathways open for high-level colistin resistance. We show that the evolution of resistance is a complex, multistep process that requires mutation in at least five independent loci that synergistically create the phenotype. Strong intergenic epistasis limits the number of possible evolutionary pathways to resistance. Mutations in transcriptional regulators are essential for resistance evolution and function as nodes that potentiate further evolution towards higher resistance by functionalizing and increasing the effect of the other mutations. These results add to our understanding of clinical antimicrobial peptide resistance and the prediction of resistance evolution.

General information

State: Published
Organisations: Department of Systems Biology, Novo Nordisk Foundation Center for Biosustainability, Infection Microbiology, National Veterinary Institute, Section for Bacteriology, Pathology and Parasitology, Technical University of Denmark, University of Copenhagen
The phenotypic evolution of *Pseudomonas aeruginosa* populations changes in the presence of subinhibitory concentrations of ciprofloxacin

Ciprofloxacin is a widely used antibiotic, in the class of quinolones, for treatment of *Pseudomonas aeruginosa* infections. The immediate response of *P. aeruginosa* to subinhibitory concentrations of ciprofloxacin has been investigated previously. However, the long-term phenotypic adaptation, which identifies the fitted phenotypes that have been selected during evolution with subinhibitory concentrations of ciprofloxacin, has not been studied. We chose an experimental evolution approach to investigate how exposure to subinhibitory concentrations of ciprofloxacin changes the evolution of *P. aeruginosa* populations compared to unexposed populations. Three replicate populations of *P. aeruginosa* PAO1 and its hypermutable mutant ΔmutS were cultured aerobically for approximately 940 generations by daily passages in LB medium with and without subinhibitory concentration of ciprofloxacin and aliquots of the bacterial populations were regularly sampled and kept at -80°C for further investigations. We investigate here phenotypic changes between the ancestor (50 colonies) and evolved populations (120 colonies/strain). Decreased protease activity and swimming motility, higher levels of quorum-sensing signal molecules and occurrence of mutator subpopulations were observed in the ciprofloxacin-exposed populations compared to the ancestor and control populations. Transcriptomic analysis showed downregulation of the type III secretion system in evolved populations compared to the ancestor population and upregulation of denitrification genes in ciprofloxacin-evolved populations. In conclusion, the presence of antibiotics at subinhibitory concentration in the environment affects bacterial evolution and further studies are needed to obtain insight into the dynamics of the phenotypes and the mechanisms involved.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology, Righospitalet, University of Copenhagen
Contributors: Wassermann, T., Meinike Jørgensen, K., Ivanyshyn, K., Bjarnsholt, T., Khademi, S. M. H., Jelsbak, L., Høiby, N., Ciofu, O.
Number of pages: 11
Pages: 865-875
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Microbiology
Volume: 162
Issue number: 5
ISSN (Print): 1350-0872
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.78 SJR 0.924 SNIP 0.6
Web of Science (2017): Impact factor 1.866
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.56 SJR 1.035 SNIP 0.663
Web of Science (2016): Impact factor 2.151
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.05 SJR 1.352 SNIP 0.859
Web of Science (2015): Impact factor 2.268
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.69 SJR 1.461 SNIP 0.97
Web of Science (2014): Impact factor 2.557
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.34 SJR 1.674 SNIP 1.028
Web of Science (2013): Impact factor 2.835
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories

Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology.
Bacteriocin-mediated competition in cystic fibrosis lung infections

Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations, especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that (i) isolates from later infection stages inhibited earlier infecting strains less, but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage over time; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections.
Clinical utilization of genomics data produced by the international *Pseudomonas aeruginosa* consortium

The International *Pseudomonas aeruginosa* Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of *Pseudomonas* genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International *Pseudomonas* Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that *P. aeruginosa* strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of *P. aeruginosa* strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.

General information

State: Published

Organisations: Department of Systems Biology, Infection Microbiology, Universite Laval, University of Liverpool


Number of pages: 8

Publication date: 2015

Peer-reviewed: Yes

Publication information

Journal: Frontiers in Microbiology

Volume: 6

Article number: 1036

ISSN (Print): 1664-302X

Ratings:

BFI (2019): BFI-level 1

Web of Science (2019): Indexed yes

BFI (2018): BFI-level 1

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 1

Scopus rating (2017): CiteScore 4.19 SJR 1.699 SNIP 1.174

Web of Science (2017): Impact factor 4.019

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 4.16 SJR 1.759 SNIP 1.161

Web of Science (2016): Impact factor 4.076
Epistatic Mutations And Unpredictable Phenotypes In Pseudomonas Aeruginosa

Pseudomonas aeruginosa is an opportunistic pathogen, able to adapt to stressful environments such as the cystic fibrosis (CF) airways. Adaptation of P. aeruginosa to the CF environment is associated with phenotypic changes, such as switch in mucoidy, antibiotic resistance and loss of virulence factors. The phenotypic changes arise from mutations in trans-regulatory elements but are nearly impossible to predict from sequence data alone. Often, the combinatorial effects of few mutations in global regulators give rise to unexpected phenotypes. To understand the epistatic effect and how unexpected phenotypes arise from seemingly unrelated mutations, we have studied two mutations in P. aeruginosa transcriptional regulators, sigma factor rpoD and algT.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology, Enzyme and Protein Chemistry
Contributors: Andresen, E. K., Abou Hachem, M., Jelsbak, L.
Pages: 49-49
Publication date: 2015

Host publication information
Title of host publication: The Danish Microbiological Society Annual Congress 2015 : Programme & Abstracts
Place of publication: Copenhagen
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2015
Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients

The opportunistic pathogen Pseudomonas aeruginosa causes chronic airway infections in patients with cystic fibrosis (CF), and it is directly associated with the morbidity and mortality connected with this disease. The ability of P. aeruginosa to establish chronic infections in CF patients is suggested to be due to the large genetic repertoire of P. aeruginosa and its ability to genetically adapt to the host environment. Here, we review the recent work that has applied whole-genome sequencing to understand P. aeruginosa population genomics, within-host microevolution and diversity, mutational mechanisms, genetic adaptation and transmission events. Finally, we summarize the advances in relation to medical applications and laboratory evolution experiments.
Genomic Evolution Of The Mdr Serotype O12 Pseudomonas Aeruginosa Clone

Introduction: Since the 1980's the serotype O12 of Pseudomonas aeruginosa has emerged as the predominant serotype in clinical settings and in epidemic outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics.

Methods: In this study, we explore how the P. aeruginosa LPS biosynthesis gene clusters evolve in the population by investigating the phylogenetic relationship among 83 P. aeruginosa strains and their serotype. In the process we develop a program for in silico serotyping of P. aeruginosa isolates, the P. aeruginosa serotyper (PAsst).

Results: While most serotypes were closely linked to the core genome phylogeny we observed horizontal exchange of LPS genes among distinct P. aeruginosa strains. Specifically, we identified a 'serotype island' containing the P. aeruginosa O12 LPS gene cluster and an antibiotic resistance determinant (gyrAC248T) that has been transferred among P. aeruginosa strains. Acquisition and recombination of the 'serotype island' resulted in expression of the O12 serotype in the recipient strains. Conclusions: This observation demonstrates a strong selective advantage for this type of genomic recombination, and suggest that serotype switching in combination with an antibiotic resistance determinant contributed to the dissemination of the O12 serotype in the clinic. This selective advantage coincides with the introduction of fluoroquinolones in the clinic. With the PAsst program isolates can be serotyped using WGS data, and dangerous clones like O12 can be identified quickly.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology, University of Guelph, Universite Laval, Queen Astrid Military Hospital
Contributors: Thrane, S. W., Taylor, V. L., Freschi, L., Kukavica-Ibrulj, I., Boyle, B., Laroche, J., Pirmay, J., Lévesque, R. C., Lam, J. S., Jelsbak, L.
Pages: 48-48
Publication date: 2015

Host publication information
Title of host publication: The Danish Microbiological Society Annual Congress 2015 : Programme & Abstracts
Place of publication: Copenhagen
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2015

phuR intergenic mutation results in pleiotropic effects on global gene expression

We have previously found a positive selection for promoter mutations in Pseudomonas aeruginosa DK2 leading to increased expression of the phu (Pseudomonas heme utilization) system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrated that increased expression of phuR confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves towards iron acquisition from hemoglobin.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology, University of Copenhagen
Contributors: Khademi, S. M. H., Wassermann, T., Ciofu, O., Jelsbak, L.
Pages: 126-127
Publication date: 2015

Host publication information
Title of host publication: Proceedings of the ASM Conference on Pseudomonas 2015
Publisher: American Society for Microbiology
Article number: 126
Electronic versions:
phuR_intergenic_mutation_results_in_pleiotropic_effects_on_global_gene_expression.pdf
phuR_intergenic_mutation_results_in_pleiotropic_effects_on_global_gene_expression.publish.pdf
Research output: Research - peer-review › Conference abstract in proceedings – Annual report year: 2015

Metabolic adaptation of a human pathogen during chronic infections - a systems biology approach

Biological systems are complex. When we want to understand biological processes we often need advanced methods to reveal the relationship between genotype and phenotype.

The focus of this thesis has been to extract biological meaningful features from complex data sets and to use mathematical modeling to uncover how human pathogens adapt to the human host. Pseudomonas aeruginosa infections in cystic fibrosis patients are used as a model system for under--- standing these adaptation processes.

The exploratory systems biology approach facilitates identification of important phenotypes and metabolic pathways that are necessary or related to establishment of chronic infections. Archetypal analysis showed to be successful in extracting relevant phenotypes from global gene expression data--- ta. Furthermore, genome---scale metabolic modeling showed to be useful in connecting the genotype to phenotype at a systemic level. Particular metabolic subsystems were identified as important for metabolic adaptation in P. aeruginosa. One altered metabolic phenotype was connected to a genetic change; a finding that was possible through the systems characterization and which was not identi--- fied by classical molecular
biology approaches where genes and reactions typically are investigated in a one to one relationship. This thesis is an example of how mathematical approaches and modeling can facilitate new biological understanding and provide new surprising ideas to important biological processes.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology
Contributors: Thøgersen, J. C., Molin, S., Jelsbak, L.
Number of pages: 135
Publication date: 2015

Publication information
Publisher: Department of Systems Biology, Technical University of Denmark
Original language: English
Electronic versions:
Metabolic_adaptation.pdf

Novel Path Towards Colistin Resistance In Pseudomonas Aeruginosa During Chronic Infection Involves Polymorphisms In Uncharacterized Glycosyltransferase Gene
Introduction: Antibiotic resistance development in the gram-negative bacterium Pseudomonas aeruginosa is an increasing problem. The effect of colistin, one of the few last resort drugs commonly given to cystic fibrosis (CF) patients, is dependent on the lipopolysaccharide (LPS) structure. We have identified a novel gene cluster, which is involved in colistin susceptibility in chronically infecting P. aeruginosa strains. The gene cluster contains two uncharacterized glycosyltransferases and a gene of unknown function. During chronic infection of CF patients one of the glycosyltransferase genes is prone to mutation. Methods: The glycosyltransferase single nucleotide polymorphism (SNP) was reverted to the reference genotype in a clinical isolate and in parallel introduced into the laboratory reference strain PAO1 to provide a clear background for mutational analysis. We evaluated minimal inhibitory concentration by microbroth dilution, virulence in an amoebae model and LPS structure by visualization in a silver-stained gel. Results: Reversion of the SNP to reference genotype resulted in increased colistin susceptibility, reduced virulence in an amoebae model and altered LPS structure. The results indicate that this glycosyltransferase polymorphism is needed for the clinical strain to be fully virulent. However, introducing the SNP into PAO1 did not result in altered phenotypes. These results reveal this uncharacterized glycosyltransferase as a novel in vivo path to colistin resistance by LPS modification. Conclusions: Colistin resistance development in vivo occurs via multiple paths. Here a novel pathway for the development of colistin resistance was described. It involves mutations in a hitherto uncharacterized glycosyltransferase.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology
Contributors: Hermansen, G. M. M., Jelsbak, L.
Pages: 32-33
Publication date: 2015

Host publication information
Title of host publication: The Danish Microbiological Society Annual Congress 2015: Programme & Abstracts
Place of publication: Copenhagen
Research output: Research › peer-review › Conference abstract in proceedings – Annual report year: 2015

Rnaseq As A Method To Study Microbial Interactions Arising In The Cystic Fibrosis Airways
Introduction: In previous studies from our laboratory, a Pseudomonas aeruginosa lineage, named DK2, has been identified and characterized as highly successful, transmissible and persistent over four decades in cystic fibrosis (CF) patients. This lineage underwent substantial phenotypic and genetic changes over time and therefore provides a unique opportunity to explore the impact of those adaptational pathways on its ability to interact with other pathogenic bacteria such as Staphylococcus aureus, a pathogen frequently co-infecting the CF airways. Methods: We have used a novel method to study interspecies interactions between a CF isolate (2003) from the DK2 lineage and a wild-type S. aureus JE2. We grew both strains in mono or co-culture on LB agar, harvested RNA from the colonies after a 24-hour period. Subsequently we performed RNA-seq for the different samples. The data were then compared in a pairwise mode to isolate the transcriptomic profiles for each species. The most differentially expressed genes from both species were validated using real-time quantitative PCR. Results: Interestingly, the greatest expression change was observed in S. aureus, where large clusters of genes associated with virulence were differentially expressed, compared with the monoculture condition, while the P. aeruginosa DK2 response was much more discrete with isolated genes differentially regulated rather than whole operons or clusters. Conclusions: According to our data, S. aureus would display reduced virulence in the presence of an adapted P. aeruginosa DK2 clone, possibly as a consequence of the multiple hostile forces DK2 encountered over time during its long-term adaptation to the CF airways.
Substantial Molecular Evolution In Prolonged Latent *Mycobacterium Tuberculosis* Infections In Humans

**Introduction**: Despite its central role as a reservoir for active tuberculosis disease (TB), latent *Mycobacterium tuberculosis* (*Mtb*) infections and the underlying persistence mechanisms are poorly understood. The *Mtb* genome in latently infected individuals may hold the key to understanding the processes that lead to reactivation and progression to clinical disease.

**Methods**: We studied genomic relationships among 14 isolates of *Mtb* from historical and recent Danish clinical strain collections, spanning more than three decades, to investigate 6 putative cases of *Mtb* reactivation, inferred from IS6110 profiles. Single-nucleotide polymorphism (SNPs) patterns were analyzed to identify true cases of TB re-activation, as well as the underlying mutational patterns. Results: Two parallel cases of latent TB reactivation were identified. We found an average mutation rate of 0.2 – 0.3 over 33 years, as well as evidence for distinct processes such as oxidative damage or natural selection having contributed to mutation accumulation. Conclusions: Our study shows that distinct processes can shape *Mtb* genomes during latent infection. Most importantly, we document substantial molecular evolution of *Mtb* over three decades, with mutation rates similar to observations from cases of active disease. Our study thus emphasizes the importance of identifying and controlling latent cases.

The widespread multi-drug-resistant serotype O12 *Pseudomonas aeruginosa* clone emerged through concomitant horizontal transfer of serotype antigen and antibiotic resistance gene clusters

**Introduction**: The O-specific antigen (OSA) in *Pseudomonas aeruginosa* lipopolysaccharide is highly varied by sugar identity, side chains, and bond between O-repeats. These differences classified *P. aeruginosa* into 20 distinct serotypes. In the past few decades, O12 has emerged as the predominant serotype in clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the *P. aeruginosa* OSA
biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P. aeruginosa strains and their serotypes. While most serotypes were closely linked to the core genome phylogeny, we observed horizontal exchange of OSA biosynthesis genes among phylogenetically distinct P. aeruginosa strains. Specifically, we identified a “serotype island” ranging from 82 kb to 185 kb containing the P. aeruginosa O12 OSA gene cluster, an antibiotic resistance determinant (gyrA<sup>C248T</sup>), and other genes that have been transferred between P. aeruginosa strains with distinct core genome architectures. We showed that these genes were likely acquired from an O12 serotype strain that is closely related to P. aeruginosa PA7. Acquisition and recombination of the “serotype island” resulted in displacement of the native OSA gene cluster and expression of the O12 serotype in the recipients. Serotype switching by recombination has apparently occurred multiple times involving bacteria of various genomic backgrounds. In conclusion, serotype switching in combination with acquisition of an antibiotic resistance determinant most likely contributed to the dissemination of the O12 serotype in clinical settings. Infection rates in hospital settings by multidrug-resistant (MDR) Pseudomonas aeruginosa clones have increased during the past decades, and serotype O12 is predominant among these epidemic strains. It is not known why the MDR phenotype is associated with serotype O12 and how this clone type has emerged. This study shows that evolution of MDR O12 strains involved a switch from an ancestral O4 serotype to O12. Serotype switching was the result of horizontal transfer and genetic recombination of lipopolysaccharide (LPS) biosynthesis genes originating from an MDR taxonomic outlier P. aeruginosa strain. Moreover, the recombination event also resulted in acquisition of antibiotic resistance genes. These results impact on our understanding of MDR outbreak strain and serotype evolution and can potentially assist in better monitoring and prevention.

**General information**

State: Published

Organisations: Department of Systems Biology, National Food Institute, Infection Microbiology, University of Guelph, Université Laval, Queen Astrid Military Hospital

Contributors: Thrane, S. W., Taylor, V. L., Freschi, L., Kukavica-Ibrulj, I., Boyle, B., Laroche, J., Pirnay, J., Lévesque, R. C., Lam, J. S., Jelsbak, L.

Number of pages: 10

Publication date: 2015

Peer-reviewed: Yes

**Publication information**

Journal: mBio (Online)

Volume: 6

Issue number: 5

Article number: e01396-15

ISSN (Print): 2150-7511

Ratings:

BFI (2019): BFI-level 1

Web of Science (2019): Indexed yes

BFI (2018): BFI-level 1

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 1

Scopus rating (2017): CiteScore 6.08

Web of Science (2017): Impact factor 6.689

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 5.79

Web of Science (2016): Impact factor 6.956

BFI (2015): BFI-level 1

Scopus rating (2015): CiteScore 4.93

Web of Science (2015): Impact factor 6.975

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1

Scopus rating (2014): CiteScore 4.23

Web of Science (2014): Impact factor 6.786

Web of Science (2014): Indexed yes

BFI (2013): BFI-level 1

Scopus rating (2013): CiteScore 4.26

Web of Science (2013): Impact factor 6.875

ISI indexed (2013): ISI indexed yes
Diversity Generation in Evolving Microbial Populations

Organisms have evolved and diversified since the beginning of life. Although, generation and maintenance of diversity within ecosystems has been a central concern in ecology and evolutionary biology, little is known of the evolutionary processes driving diversification. Especially, diversification in relation to chronic infection is a major concern as high population diversity has been predicted to result in survival and persistence of the infecting microbe.

Therefore, understanding within-host dynamics and population diversification is necessary for optimal diagnosis and therapeutic treatment.

Chronic Pseudomonas aeruginosa infections in the airways of patients with cystic fibrosis (CF) offer opportunities to study bacterial evolution and adaptation in natural environments. Significantly phenotypic and genomic changes of P. aeruginosa have been observed during chronic infection. While P. aeruginosa diversity has been documented in contemporary respiratory specimens, it is less clear to what extent within-patient diversity contributes to the overall population structure and whether the population is geographically or homogeneously distributed throughout the airways.

The focus of this thesis has been to get a better understanding of how bacterial populations adapt to new, complex and heterogeneous environments with multiple selective pressures over long periods, and to analyse diversification during this adaptation. Using the P. aeruginosa chronic infection as a model system, and by combining bacterial genome sequencing, phenotypic profiling and unique sampling materials which included clonal bacterial isolates sampled for more than 4 decades from chronically infected CF patients, we were able to investigate the diversity generation of the clinical important and highly successful P. aeruginosa DK1 clone type during chronic airway infection in CF patients.

We show here that diversification of P. aeruginosa DK1 occurs through the emergence of coexisting subpopulations with distinct phenotypic and genomic features and demonstrate that this diversification was a result of niche specialization as each subpopulation colonized separate geographical niches. This highly complex population diversity was observed to be stably maintained during long-term evolution. Before diversification of the DK1 clone, a regulatory mutation was found to be fixed in the population causing alteration of multiple phenotypes representing the chronic stage phenotype.

Often chronic CF infections are polyclonal and therefore we investigated the population dynamics in a patient polyclonal infected with both DK1 and DK2. We demonstrated that diversification was affected by the presence of other clones; interaction between the two clones resulted in horizontal DNA transfer that contributed to the observed population diversity.
by creating a novel strain DK1/2 found to persist in the CF airways. These data indicate that spatial compartmentalization and transfer of DNA between infecting microbes can cause generation and maintenance of population diversity of infecting pathogens. Furthermore, fine-tuning of global regulatory networks by modification of transcriptional regulators has fundamental roles in successful adaptation of P. aeruginosa to the CF environment.

Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa. Within-host pathogen evolution and diversification during the course of chronic infections is of importance in relation to therapeutic intervention strategies, yet our understanding of these processes is limited. Here, we investigate intraclonal population diversity in P. aeruginosa during chronic airway infections in cystic fibrosis patients. We show the evolution of a diverse population structure immediately after initial colonization, with divergence into multiple distinct sublineages that coexisted for decades and occupied distinct niches. Our results suggest that the spatial heterogeneity in CF airways plays a major role in relation to the generation and maintenance of population diversity and emphasize that a single isolate in sputum may not represent the entire pathogen population in the infected individual. A more complete understanding of the evolution of distinct clonal variants and their distribution in different niches could have positive implications for efficient therapy.
Staphylococcus aureus Alters Growth Activity, Autolysis, and Antibiotic Tolerance in a Human Host-Adapted Pseudomonas aeruginosa Lineage.

Interactions among members of polymicrobial infections or between pathogens and the commensal flora may determine disease outcomes. Pseudomonas aeruginosa and Staphylococcus aureus are important opportunistic human pathogens and are both part of the polymicrobial infection communities in human hosts. In this study, we analyzed the in vitro interaction between S. aureus and a collection of P. aeruginosa isolates representing different evolutionary steps of a dominant lineage, DK2, that have evolved through decades of growth in chronically infected patients. While the early adapted P. aeruginosa DK2 strains outcompeted S. aureus during coculture on agar plates, we found that later P. aeruginosa DK2 strains showed a commensal-like interaction, where S. aureus was not inhibited by P. aeruginosa and the growth activity of P. aeruginosa was enhanced in the presence of S. aureus. This effect is mediated by one or more extracellular S. aureus proteins greater than 10 kDa, which also suppressed P. aeruginosa autolysis and prevented killing by clinically relevant antibiotics through promoting small-colony variant (SCV) formation. The commensal interaction was abolished with S. aureus strains mutated in the agr quorum sensing system or in the SarA transcriptional virulence regulator, as well as with strains lacking the proteolytic subunit, ClpP, of the Clp protease. Our results show that during evolution of a dominant cystic fibrosis lineage of P. aeruginosa, a commensal interaction potential with S. aureus has developed.
Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin.

Pseudomonas aeruginosa airway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist, P. aeruginosa depends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and the Pseudomonas heme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation of P. aeruginosa to the host environment. Here we investigated the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages, phuR promoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. IMPORTANCE Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution of P. aeruginosa, and we found evidence that P. aeruginosa during long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.
Within-host evolution of Pseudomonas aeruginosa toward iron acquisition from hemoglobin in polymicrobial CF infections

Bacterial pathogens require iron to survive and colonize a human host but their access to free iron is often limited by iron-withholding process where free iron is bound by proteins such as hemoglobin. Although most pathogens have developed tactics to acquire iron from host proteins, little is known about how evolutionary processes modulate bacterial iron acquisition systems in chronic, polymicrobial infections where interspecies competition for limited iron could be an evolutionary driver.

Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways

BACKGROUND: Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data. The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients. RESULTS: Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria. CONCLUSIONS: Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering and matrix factorization made it
possible to reveal minor similarities among different groups of data, which other analytical methods failed to identify. We suggest that this analysis could be used to supplement current methods used to analyze DNA microarray data.

**General information**

State: Published
Organisations: Department of Systems Biology, Infection Microbiology, Department of Applied Mathematics and Computer Science, Cognitive Systems
Contributors: Thøgersen, J. C., Mørup, M., Pedersen, S. D., Molin, S., Jelsbak, L.
Pages: 279
Publication date: 2013
Peer-reviewed: Yes

**Publication information**

Journal: BMC Bioinformatics
Volume: 14
Issue number: 1
ISSN (Print): 1471-2105
Ratings:
- BFI (2019): BFI-level 1
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 2.49 SJR 1.479 SNIP 0.878
- Web of Science (2017): Impact factor 2.213
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 2.54 SJR 1.581 SNIP 0.974
- Web of Science (2016): Impact factor 2.448
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 2.77 SJR 1.737 SNIP 1.079
- Web of Science (2015): Impact factor 2.435
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 2.91 SJR 1.916 SNIP 1.185
- Web of Science (2014): Impact factor 2.576
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 3.38 SJR 1.999 SNIP 1.323
- Web of Science (2013): Impact factor 2.672
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 3.24 SJR 1.9 SNIP 1.145
- Web of Science (2012): Impact factor 3.024
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 3.34 SJR 1.662 SNIP 1.19
- Web of Science (2011): Impact factor 2.751
- ISI indexed (2011): ISI indexed yes
- Web of Science (2011): Indexed yes
- BFI (2010): BFI-level 1
- Scopus rating (2010): SJR 1.775 SNIP 1.13
- Web of Science (2010): Impact factor 3.029
- Web of Science (2010): Indexed yes
Draft Genome Sequences of Pseudomonas aeruginosa B3 Strains Isolated from a Cystic Fibrosis Patient Undergoing Antibiotic Chemotherapy

Pseudomonas aeruginosa frequently establishes chronic infections in the airways of patients suffering from cystic fibrosis (CF). Here, we report the draft genome sequences of four P. aeruginosa B3 strains isolated from a chronically infected CF patient undergoing antibiotic chemotherapy.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology, Drug Resistance and Community Dynamics, Technical University of Denmark, Copenhagen University Hospital
Number of pages: 2
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Genome Announcements
Volume: 1
Issue number: 5
ISSN (Print): 2169-8287
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.01 SJR 0.553 SNIP 0.407
Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts
The genetic basis of bacterial adaptation to a natural environment has been investigated in a highly successful Pseudomonas aeruginosa lineage (DK2) that evolved within the airways of patients with cystic fibrosis (CF) for more than 35 y. During evolution in the CF airways, the DK2 lineage underwent substantial phenotypic changes, which correlated with temporal fixation of specific mutations in the genes mucA (frame-shift), algT (substitution), rpoN (substitution), lasR (deletion), and rpoD (in-frame deletion), all encoding regulators of large gene networks. To clarify the consequences of these genetic changes, we moved the specific mutations, alone and in combination, to the genome of the reference strain PAO1. The phenotypes of the engineered PAO1 derivatives showed striking similarities with phenotypes observed among the DK2 isolates. The phenotypes observed in the DK2 isolates and PAO1 mutants were the results of individual, additive and epistatic effects of the regulatory mutations. The mutations fixed in the σ factor encoding genes algT, rpoN, and rpoD caused minor changes in σ factor activity, resulting in remodeling of the regulatory networks to facilitate generation of unexpected phenotypes. Our results suggest that adaptation to a highly selective environment, such as the CF airways, is a highly dynamic and complex process, which involves continuous optimization of existing regulatory networks to match the fluctuations in the environment.
Genome sequencing of bacterial pathogens has advanced our understanding of their evolution, epidemiology, and response to antibiotic therapy. However, we still have only a limited knowledge of the molecular changes in in vivo evolving bacterial populations in relation to long-term, chronic infections. For example, it remains unclear what genes are mutated to facilitate the establishment of long-term existence in the human host environment, and in which way acquisition
of a hypermutator phenotype with enhanced rates of spontaneous mutations influences the evolutionary trajectory of the pathogen. Here we perform a retrospective study of the DK2 clone type of P. aeruginosa isolated from Danish patients suffering from cystic fibrosis (CF), and analyze the genomes of 55 bacterial isolates collected from 21 infected individuals over 38 years. Our phylogenetic analysis of 8,530 mutations in the DK2 genomes shows that the ancestral DK2 clone type spread among CF patients through several independent transmission events. Subsequent to transmission, sub-lineages evolved independently for years in separate hosts, creating a unique possibility to study parallel evolution and identification of genes targeted by mutations to optimize pathogen fitness (pathoadaptive mutations). These genes were related to antibiotic resistance, the cell envelope, or regulatory functions, and we find that the prevalence of pathoadaptive mutations correlates with evolutionary success of co-evolving sub-lineages. The long-term co-existence of both normal and hypermutator populations enabled comparative investigations of the mutation dynamics in homopolymeric sequences in which hypermutators are particularly prone to mutations. We find a positive exponential correlation between the length of the homopolymer and its likelihood to acquire mutations and identify two homopolymer-containing genes preferentially mutated in hypermutators. This homopolymer facilitated differential mutagenesis provides a novel genome-wide perspective on the different evolutionary trajectories of hypermutators, which may help explain their emergence in CF infections.

General information
State: Published
Organisations: Department of Systems Biology, Infection Microbiology
Contributors: Marvig, R. L., Johansen, H. K., Molin, S., Jelsbak, L.
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: PLoS Genetics
Volume: 9
Issue number: 9
Article number: e1003741
ISSN (Print): 1553-7390
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.57 SJR 4.829 SNIP 1.364
Web of Science (2017): Impact factor 5.54
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.93 SJR 5.457 SNIP 1.512
Web of Science (2016): Impact factor 6.1
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.63 SJR 7.009 SNIP 1.773
Web of Science (2014): Impact factor 7.528
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.74 SJR 7.107 SNIP 1.746
Web of Science (2013): Impact factor 8.167
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 8.17 SJR 7.403 SNIP 1.907
Web of Science (2012): Impact factor 8.517
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Typing of Pseudomonas aeruginosa from hemorrhagic pneumonia in mink (Neovison vison)

Hemorrhagic pneumonia in mink (Neovison vison) is caused by Pseudomonas aeruginosa and is an acute and fatal disease in farmed mink. Earlier work has demonstrated that some outbreaks of hemorrhagic pneumonia are caused by pathogenic strains while most outbreaks are caused by local strains. The objective of this study was to determine the genetic and geographical relationship among outbreaks of hemorrhagic pneumonia by pulsed field gel electrophoresis typing of P. aeruginosa isolates. Furthermore, chosen isolates were typed by a commercial genotyping method based on single nucleotide polymorphisms (SNPs) and compared to a larger dataset of human and environmental origin. The bacterial isolates were obtained from diagnostic samples from 2002-2009 and contained 164 isolates from 95 outbreaks on 90 farms. Our results show that most outbreaks of hemorrhagic pneumonia in mink are caused by distinct strains of P. aeruginosa. We also identified related P. aeruginosa strains which, together with two prevalent but unrelated clones, caused one third of the outbreaks of hemorrhagic pneumonia supporting the sparse literature on this subject. None of the SNP typed strains were identified in a large dataset of human and environmental origin.

General information
State: Published
Organisations: National Veterinary Institute, Department of Systems Biology, Center for Systems Microbiology, University of Southern Denmark, Copenhagen University Hospital
Pages: 103-109
Publication date: 2013
Peer-reviewed: Yes
<table>
<thead>
<tr>
<th>Year</th>
<th>Web of Science</th>
<th>Scopus rating</th>
<th>BFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Impact factor 2.524</td>
<td>CiteScore 2.65 SJR 1.363 SNIP 1.206</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2016</td>
<td>Indexed yes</td>
<td>Impact factor 2.628</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2015</td>
<td>Indexed yes</td>
<td>CiteScore 2.56 SJR 1.413 SNIP 1.21</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2014</td>
<td>Indexed yes</td>
<td>CiteScore 2.54 SJR 1.291 SNIP 1.256</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2013</td>
<td>Indexed yes</td>
<td>CiteScore 3 SJR 1.459 SNIP 1.471</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2012</td>
<td>Indexed yes</td>
<td>CiteScore 3.18 SJR 1.441 SNIP 1.569</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2011</td>
<td>Indexed yes</td>
<td>CiteScore 3.27 SJR 1.56 SNIP 1.729</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2010</td>
<td>Indexed yes</td>
<td>CiteScore 3.256</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2009</td>
<td>Indexed yes</td>
<td>SJR 1.39 SNIP 1.474</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2008</td>
<td>Indexed yes</td>
<td>SJR 1.164 SNIP 1.29</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2007</td>
<td>Indexed yes</td>
<td>SJR 1.048 SNIP 1.315</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2006</td>
<td>Indexed yes</td>
<td>SJR 1.03 SNIP 1.396</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2005</td>
<td>Indexed yes</td>
<td>SJR 1.089 SNIP 1.259</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2004</td>
<td>Indexed yes</td>
<td>SJR 0.873 SNIP 1.248</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2003</td>
<td>Indexed yes</td>
<td>SJR 0.905 SNIP 1.181</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2002</td>
<td>Indexed yes</td>
<td>SJR 0.905 SNIP 1.13</td>
<td>BFI-level 2</td>
</tr>
<tr>
<td>2001</td>
<td>Indexed yes</td>
<td>SJR 0.828 SNIP 1.051</td>
<td>BFI-level 2</td>
</tr>
</tbody>
</table>
Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective.

The airways of patients with cystic fibrosis (CF) are nearly always infected with many different microorganisms. This environment offers warm, humid and nutrient-rich conditions, but is also stressful owing to frequent antibiotic therapy and the host immune response. Pseudomonas aeruginosa is commonly isolated from the airways of patients with CF, where it most often establishes chronic infections that usually persist for the rest of the lives of the patients. This bacterium is a major cause of mortality and morbidity and has therefore been studied intensely. Here, we discuss how P. aeruginosa evolves from a state of early, recurrent intermittent colonization of the airways of patients with CF to a chronic infection state, and how this process offers opportunities to study bacterial evolution in natural environments. We believe that such studies are valuable not only for our understanding of bacterial evolution but also for the future development of new therapeutic strategies to treat severe chronic infections.

General information
State: Published
Organisations: Department of Systems Biology, Center for Systems Microbiology, National Veterinary Institute, Section for Bacteriology, Pathology and Parastitology, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factories, University of Copenhagen
Number of pages: 841
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Nature Reviews. Microbiology
Volume: 10
Issue number: 12
ISSN (Print): 1740-1526
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 13.39 SJR 17.634 SNIP 7.075
Web of Science (2017): Impact factor 31.851
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 11.56 SJR 15.351 SNIP 6.289
Web of Science (2016): Impact factor 26.819
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 10.91 SJR 15.714 SNIP 5.89
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 9.88 SJR 12.766 SNIP 5.227
Web of Science (2014): Impact factor 23.574
BFI (2013): BFI-level 2
Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment

Adaptation of bacterial pathogens to a permanently host-associated lifestyle by means of deletion or acquisition of genetic material is usually examined through comparison of present-day isolates to a distant theoretical ancestor. This limits the resolution of the adaptation process. We conducted a retrospective study of the dissemination of the P. aeruginosa DK2 clone type among patients suffering from cystic fibrosis, sequencing the genomes of 45 isolates collected from 16 individuals over 35 years. Analysis of the genomes provides a high-resolution examination of the dynamics and mechanisms of the change in genetic content during the early stage of host adaptation by this P. aeruginosa strain as it adapts to the cystic fibrosis (CF) lung of several patients. Considerable genome reduction is detected predominantly through the deletion of large genomic regions, and up to 8% of the genome is deleted in one isolate. Compared with in vitro estimates the resulting average deletion rates are 12- to 36-fold higher. Deletions occur through both illegitimate and homologous recombination, but they are not IS element mediated as previously reported for early stage host adaptation. Uptake of novel DNA sequences during infection is limited as only one prophage region was putatively inserted in one isolate, demonstrating that early host adaptation is characterized by the reduction of genomic repertoire rather than acquisition of novel functions. Finally, we also describe the complete genome of this highly adapted pathogenic strain of P. aeruginosa to strengthen the genetic basis, which serves to help our understanding of microbial evolution in a natural environment.

General information
State: Published
Organisations: Department of Systems Biology, Center for Systems Microbiology, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factories, Allegheny-Singer Research Institute
Contributors: Rau, M. H., Marvig, R. L., Ehrlich, G. D., Molin, S., Jelsbak, L.
Pages: 2200-2211
Publication date: 2012
Peer-reviewed: Yes
Evolution and diversification of *Pseudomonas aeruginosa* in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection

The opportunistic pathogen *Pseudomonas aeruginosa* is a frequent colonizer of the airways of patients suffering from cystic fibrosis (CF). Depending on early treatment regimens, the colonization will, with high probability, develop into chronic infections sooner or later, and it is important to establish under which conditions the switch to chronic infection takes place. In association with a recently established sinus surgery treatment program for CF patients at the Copenhagen CF Center, colonization of the paranasal sinuses with *P. aeruginosa* has been investigated, paralleled by sampling of sputum from the same patients. On the basis of genotyping and phenotypic characterization including transcription profiling, the diversity of the *P. aeruginosa* populations in the sinuses and the lower airways was investigated and compared. The observations made from several children show that the paranasal sinuses constitute an important niche for the colonizing bacteria in many patients. The paranasal sinuses often harbor distinct bacterial subpopulations, and in the early colonization phases there seems to be a migration from the sinuses to the lower airways, suggesting that independent adaptation and evolution take place in the sinuses. Importantly, before the onset of chronic lung infection, lineages with mutations conferring a large fitness benefit in CF airways such as mucA and lasR as well as small colony variants and antibiotic-resistant clones are part of the sinus populations. Thus, the paranasal sinuses potentially constitute a protected niche of adapted clones of *P. aeruginosa*, which can intermittently seed the lungs and pave the way for subsequent chronic lung infections.

**General information**

State: Published
Organisations: Department of Systems Biology, Center for Systems Microbiology, Center for Biological Sequence Analysis, Copenhagen University Hospital, University of Copenhagen
Pages: 31
Publication date: 2012
Peer-reviewed: Yes

**Publication information**

Journal: *I S M E Journal*
Volume: 6
Issue number: 1
ISSN (Print): 1751-7362
Ratings:
- BFI (2019): BFI-level 2
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 9.5 SJR 4.813 SNIP 2.284
- Web of Science (2017): Impact factor 9.52
- Web of Science (2017): Indexed yes
Evolutionary dynamics of pseudomonas aeruginosa in CF

General information
State: Published
Organisations: Department of Systems Biology, Center for Systems Microbiology, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factories, Copenhagen University Hospital
Contributors: Molin, S., Jelsbak, L., Johansen, H., Hoiby, N.
Pages: 152-153
Publication date: 2012
Peer-reviewed: Yes
Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria

Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.
Mutations in 23S rRNA Confer Resistance against Azithromycin in Pseudomonas aeruginosa

The emergence of antibiotic-resistant Pseudomonas aeruginosa is an important concern in the treatment of long-term airway infections in cystic fibrosis patients. In this study, we report the occurrence of azithromycin resistance among clinical P. aeruginosa DK2 isolates. We demonstrate that resistance is associated with specific mutations (A2058G, A2059G, and C2611T in Escherichia coli numbering) in domain V of 23S rRNA and that introduction of A2058G and C2611T into strain PAO1 results in azithromycin resistance.
Aspergillus triggers phenazine production in Pseudomonas aeruginosa

Objectives: Pseudomonas aeruginosa is an opportunistic human pathogen, commonly infecting cystic fibrosis (CF) patients. Aspergilli, especially Aspergillus fumigatus, are also frequently isolated from CF patients. Our aim was to examine the possible interaction between P. aeruginosa and different Aspergillus species. Methods: A suspension of fungal spores was streaked onto WATM agar plates. After 24 hours incubation at 37 °C, a P. aeruginosa overnight culture was streaked out perpendicular to the fungal streak. The plates were incubated at 37 °C for five days, examined and plugs were extracted for HPLC-DAD and HPLC-DAD-MS analysis. Results: P. aeruginosa PAO1 suppressed growth of A. fumigatus, A. niger, A. flavus, A. oryzae, A. terreus and Emericella nidulans. HPLC and HPLC-DAD-MS results showed an increase in phenazine-1-carboxylic acid and phenazine-1-carboxamide production by P. aeruginosa in the contact area of A. niger, A. flavus, A. oryzae, but not A. fumigatus. In addition, other metabolites with UV chromophores similar to the phenazines were only found in the contact zone between Aspergillus and Pseudomonas. No change in secondary metabolite profiles were seen for the Aspergilli, when comparing with or without the presence of Pseudomonas. Conclusion: All Aspergilli tested, with the exception of A. fumigatus, triggered the upregulation of phenazine-1-carboxamide and phenazine-1-carboxylic acid production by P. aeruginosa. Surprisingly no changes in secondary metabolite profiles were detected in any of the Aspergilli.

General information
State: Published
Organisations: Center for Microbial Biotechnology, Department of Systems Biology, Center for Systems Microbiology
Contributors: Jensen, B. G., Jelsbak, L., Søndergaard, I., Pedersen, M. H., Frisvad, J. C., Nielsen, K. F.
Publication date: 2011
Peer-reviewed: Yes
Event: Abstract from European Congress on Microbial Biofilms – Basic and Clinical Aspects, Copenhagen, Denmark.
Electronic versions:
Eurobiofilm_submitted.pdf
URLs:
http://www.eurobiofilms2011.ics.dk/
Source: orbit
Source-ID: 284978
Research output: Research - peer-review › Conference abstract for conference – Annual report year: 2011
Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data

Background: Bacteria employ a variety of adaptation strategies during the course of chronic infections. Understanding bacterial adaptation can facilitate the identification of novel drug targets for better treatment of infectious diseases. Transcriptome profiling is a comprehensive and high-throughput approach for characterization of bacterial clinical isolates from infections. However, exploitation of the complex, noisy and high-dimensional transcriptomic dataset is difficult and often hindered by low statistical power. Results: In this study, we have applied two kinds of unsupervised analysis methods, principle component analysis (PCA) and independent component analysis (ICA), to extract and characterize the most informative features from transcriptomic dataset generated from cystic fibrosis (CF) Pseudomonas aeruginosa isolates. ICA was shown to be able to efficiently extract biological meaningful features from the transcriptomic dataset and improve clustering patterns of CF isolates. Decomposition of the transcriptomic dataset by ICA also facilitates gene identification and gene ontology enrichment. Conclusions: Our results show that P. aeruginosa employs multiple patient-specific adaptation strategies during the early stage infections while certain essential adaptations are evolved in parallel during the chronic infections.

General information
State: Published
Organisations: Center for Systems Microbiology, Department of Systems Biology, University of Copenhagen
Contributors: Yang, L., Rau, M. H., Yang, L., Heiby, N., Molin, S., Jelsbak, L.
Pages: 184
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: BMC Microbiology
Volume: 11
ISSN (Print): 1471-2180
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.95 SJR 1.242 SNIP 0.953
Web of Science (2017): Impact factor 2.829
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.82 SJR 1.282 SNIP 0.993
Web of Science (2016): Impact factor 2.644
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.93 SJR 1.42 SNIP 0.994
Web of Science (2015): Impact factor 2.581
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.95 SJR 1.519 SNIP 1.069
Web of Science (2014): Impact factor 2.729
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.32 SJR 1.571 SNIP 1.179
Web of Science (2013): Impact factor 2.976
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.38 SJR 1.507 SNIP 1.146
Web of Science (2012): Impact factor 3.104
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Evolutionary dynamics of bacteria in a human host environment

Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment. In contrast to predictions based on in vitro evolution experiments, we document limited diversification of the evolving lineage despite a highly structured and complex host environment. Notably, the lineage went through an initial period of rapid adaptation caused by a small number of mutations with pleiotropic effects, followed by a period of genetic drift with limited phenotypic change and a genomic signature of negative selection, suggesting that the evolving lineage has reached a major adaptive peak in the fitness landscape. This contrasts with previous findings of continued positive selection from long-term in vitro evolution experiments. The evolved phenotype of the infecting bacteria further suggests that the opportunistic pathogen has transitioned to become a primary pathogen for cystic fibrosis patients.

General information
State: Published
Organisations: Center for Systems Microbiology, Department of Systems Biology, Center for Biological Sequence Analysis, Harvard Medical School, Copenhagen University Hospital
Microbial ecology and adaptation in cystic fibrosis airways

Chronic infections in the respiratory tracts of cystic fibrosis (CF) patients are important to investigate, both from medical and from fundamental ecological points of view. Cystic fibrosis respiratory tracts can be described as natural environments harbouring persisting microbial communities with Pseudomonas aeruginosa as a dominant pathogen. Various factors contribute to the complexity of this ecosystem, including community composition, dynamics and interactions, as well as heterogeneous distribution and fluctuation of components of the immune system, antibiotics and nutrients. All these elements constitute the selective forces that drive the evolution of the microbes after they migrate from the outer environment to human airways. Pseudomonas aeruginosa adapts to the new environment through genetic changes and exhibits a special lifestyle in chronic CF airways. Understanding the persistent colonization of microbial pathogens in CF patients in the context of ecology and evolution will expand our knowledge of the pathogenesis of chronic infections and improve therapeutic strategies.
Suppression of Aspergillus by Pseudomonas aeruginosa

Objectives: Cystic fibrosis patients are commonly infected by Pseudomonas aeruginosa, but Aspergilli are also frequently isolated. Our aim was to examine the possible interaction between P. aeruginosa and different Aspergillus. Methods: A.
suspension of 106 fungal spores/ml was streaked onto WATM culture plates. After 24 hours incubation at 37 °C, a P. aeruginosa overnight culture diluted to 108 CFU/ml was streaked out perpendicular to the fungal streak. The plates were incubated at 37 °C for 5 days, examined and plugs were extracted for HPLC and LC-DAD-MS analysis. Results: P. aeruginosa PAO1 suppressed growth of A. fumigatus, A. niger, A. flavus, A. oryzae, A. terreus and E. nidulans. HPLC and LC-DAD-MS results showed an increase in phenazine-1-carboxylic acid and phenazine-1-carboxamide production by P. aeruginosa in the contact area of Aspergillus. Different quinolones were also identified, here among 2-heptyl-3-hydroxy-4-quinolone (PQS). An unidentified green pseudomonas compound was also observed. Interestingly the P. aeruginosa mutant rpoN was unable to suppress A. fumigatus, but suppressed A. flavus, A. oryzae and A. niger. However several other P. aeruginosa mutants suppressed A. fumigatus including fill, pilA, lasR, PVDA, PQSC and rhlA mutants indicating that phenazines may be involved in the suppressed growth of A. fumigatus. All pseudomonas mutants suppressed A. oryzae, A. niger and A. flavus. Conclusions: An increase in phenazine production by P. aeruginosa may contribute to the ability of P. aeruginosa to suppress different Aspergilli. Especially phenazines seem to play a role, while other factors such as motility, rhamnolipid and alginate production do not seem to be involved.

General information
State: Published
Organisations: Center for Microbial Biotechnology, Department of Systems Biology, Center for Systems Microbiology
Contributors: Jensen, B. G., Jelsbak, L., Søndergaard, I., Frisvad, J. C., Nielsen, K. F.
Publication date: 2011
Peer-reviewed: Yes
Electronic versions:
Abstract.pdf
URLs:
http://www.escmid.org/index.php?id=787

Bibliographical note
Oral presentation.
Source: orbit
Source-ID: 284975
Research output: Research - peer-review | Conference abstract for conference – Annual report year: 2011

Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts

Pseudomonas aeruginosa is an opportunistic pathogen ubiquitous to the natural environment but with the capability of moving to the host environment. Long-term infection of the airways of cystic fibrosis patients is associated with extensive genetic adaptation of P. aeruginosa, and we have studied cases of the initial stages of infection in order to characterize the early adaptive processes in the colonizing bacteria. A combination of global gene expression analysis and phenotypic characterization of longitudinal isolates from cystic fibrosis patients revealed well-known characteristics such as conversion to a mucoid phenotype by mucA mutation and increased antibiotic resistance by nfxB mutation. Additionally, upregulation of the atu operon leading to enhanced growth on leucine provides a possible example of metabolic optimization. A detailed investigation of the mucoid phenotype uncovered profound pleiotropic effects on gene expression including reduction of virulence factors and the Rhl quorum sensing system. Accordingly, mucoid isolates displayed a general reduction of virulence in the Caenorhabditis elegans infection model, altogether suggesting that the adaptive success of the mucoid variant extends beyond the benefits of alginate overproduction. In the overall perspective the global phenotype of the adapted variants appears to place them on paths in direction of fully adapted strains residing in long-term chronically infected patients.

General information
State: Published
Organisations: Center for Systems Microbiology, Department of Systems Biology, Center for Biological Sequence Analysis, Center for Microbial Biotechnology, Copenhagen University Hospital, University of Copenhagen
Pages: 1643-1658
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Environmental Microbiology
Volume: 12
Issue number: 6
ISSN (Print): 1462-2912
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.83 SJR 2.209 SNIP 1.31
Web of Science (2017): Impact factor 4.974
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.02 SJR 2.377 SNIP 1.383
Web of Science (2016): Impact factor 5.395
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 5.61 SJR 3.02 SNIP 1.571
Web of Science (2015): Impact factor 5.932
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.6 SJR 2.862 SNIP 1.599
Web of Science (2014): Impact factor 6.201
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.37 SJR 3.273 SNIP 1.823
Web of Science (2013): Impact factor 6.24
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.94 SJR 3.165 SNIP 1.639
Web of Science (2012): Impact factor 5.756
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 6.1 SJR 3.368 SNIP 1.7
Web of Science (2011): Impact factor 5.843
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.775 SNIP 1.551
Web of Science (2010): Impact factor 5.537
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.502 SNIP 1.378
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.495 SNIP 1.322
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.303 SNIP 1.498
Scopus rating (2006): SJR 2.451 SNIP 1.517
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.431 SNIP 1.519
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.08 SNIP 1.239
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.794 SNIP 1.241
Web of Science (2003): Indexed yes
In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections

The growth dynamics of bacterial pathogens within infected hosts are a fundamental but poorly understood feature of most infections. We have focused on the in situ distribution and growth characteristics of two prevailing and transmissible Pseudomonas aeruginosa clones that have caused chronic lung infections in cystic fibrosis (CF) patients for more than 20 years. We used fluorescence in situ hybridization (FISH) directly on sputum specimens to examine the spatial distribution of the infecting P. aeruginosa cells. Mucoid variants were present in sputum as cell clusters surrounded by an extracellular matrix, whereas nonmucoid variants were present mainly as dispersed cells. To obtain estimates of the growth rates of P. aeruginosa in CF lungs, we used quantitative FISH to indirectly measure growth rates of bacteria in sputum samples (reflecting the in vivo lung conditions). The concentration of rRNA in bacteria isolated from sputa was measured and correlated with the rRNA contents of the same bacteria growing in vitro at defined rates. The results showed that most cells were actively growing with doubling times of between 100 and 200 min, with some growing even faster. Only a small stationary-phase subpopulation seemed to be present in sputa. This was found for both mucoid and nonmucoid variants despite their different organizations in sputum. The results suggest that the bacterial population may be confronted with selection forces that favor optimized growth activities. This scenario constitutes a new perspective on the adaptation and evolution of P. aeruginosa during chronic infections in CF patients in particular and on long-term infections in general.

General information
State: Published
Organisations: Center for Systems Microbiology, Department of Systems Biology
Pages: 2767-2776
Publication date: 2008
Peer-reviewed: Yes

Publication information
Journal: Journal of Bacteriology
Volume: 190
Issue number: 8
ISSN (Print): 0021-9193
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.94 SJR 1.885 SNIP 0.903
Web of Science (2017): Impact factor 3.219
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.08 SJR 1.943 SNIP 0.877
Web of Science (2016): Impact factor 3.143
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.84 SJR 2.154 SNIP 0.95
Web of Science (2015): Impact factor 3.198
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.72 SJR 2.084 SNIP 0.931
Complete genome sequence of the myxobacterium Sorangium cellulosum

General information
State: Published
Organisations: Department of Systems Biology
Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients

The ability to establish lifelong persistent infections is a fundamental aspect of the interactions between many pathogenic microorganisms and their mammalian hosts. One example is chronic lung infections by the opportunistic pathogen Pseudomonas aeruginosa in cystic fibrosis (CF) patients. This infection process is associated with extensive genetic adaptation and microevolution of the infecting bacteria. Through investigations of P. aeruginosa populations and infection dynamics in a group of CF patients followed at the Danish CF Clinic in Copenhagen, we have identified two distinct and dominant clones that have evolved into highly successful colonizers of CF patient airways. A significant component of the evolutionary success of these two clones has been their efficient transmissibility among the CF patients. The two clones have been present and transmitted among different CF patients for more than 2 decades. Our data also suggest that the P. aeruginosa population structure in the CF patient airways has been influenced by competition between different clones and that the two dominant clones have been particularly competitive within the lungs, which may add to their overall establishment success. In contrast, we show that adaptive traits commonly associated with establishment of chronic P. aeruginosa infections of CF patients, such as transition to the mucoid phenotype and production of virulence factors, play minor roles in the ability of the two dominant clones to spread among patients and cause long-term chronic infections. These findings suggest that hitherto-unrecognized evolutionary pathways may be involved in the development of successful and persistent P. aeruginosa colonizers of CF patient lungs.
Enhancer-binding proteins with a forkhead-associated domain and the sigma(54) regulon in Myxococcus xanthus fruiting body development

In response to starvation, Myxococcus xanthus initiates a developmental program that results in the formation of spore-filled, multicellular fruiting bodies. Many developmentally regulated genes in M. xanthus are transcribed from sigma(54) promoters, and these genes require enhancer-binding proteins. Here we report the finding of an unusual group of 12 genes encoding sigma(54)-dependent enhancer-binding proteins containing a forkhead-associated (FHA) domain as their N-terminal sensory domain. FHA domains in other proteins recognize phosphothreonine residues. An insertion mutation in one of these genes, Mx4885, caused a cell autonomous aggregation and sporulation defect. In-frame deletion mutants showed that the FHA domain is necessary for proper Mx4885 function. The altered pattern of developmental gene expression in the mutant implied that Mx4885 is on the pathway of response to the morphogenetic C-signal. Immunoblots specific for C-signa l and FruA imply that the site of Mx4885 action is downstream of FruA synthesis on the C-signal transduction pathway. Mx4885 may help to coordinate the level of intracellular phosphorylated FruA (FruA-P) with the level of C-signal displayed on the signal donor cell. Because FHA domains respond to phosphothreonine-containing proteins, these results suggest a regulatory link to the abundant Ser/Thr protein kinases in M. xanthus.

General information
State: Published
Organisations: Department of Systems Biology, Center for Biomedical Microbiology
Contributors: Jelsbak, L., Givskov, M. C., Kaiser, D.
Pages: 3010-3015
Publication date: 2005
Peer-reviewed: Yes

Publication information
Journal: Proceedings of the National Academy of Sciences of the United States of America
Volume: 102
Issue number: 8
ISSN (Print): 0027-8424
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.59 SJR 6.092 SNIP 2.626
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.56 SJR 6.576 SNIP 2.642
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.84 SJR 6.814 SNIP 2.691
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.86 SJR 6.898 SNIP 2.734
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 9.5 SJR 7.073 SNIP 2.738
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
σ54 enhancer binding proteins and Myxococcus xanthus fruiting body development

A search of the M1 genome sequence, which includes 97% of the Myxococcus xanthus genes, identified 53 sequence homologs of σ54-dependent enhancer binding proteins (EBPs). A DNA microarray was constructed from the M1 genome that includes those homologs and 318 other M. xanthus genes for comparison. To screen the developmental program with this array, an RNA extract from growing cells was compared with one prepared from developing cells at 12 h. Previous reporter studies had shown that M. xanthus has initiated development and has begun to express many developmentally regulated genes by 12 h. The comparison revealed substantial increases in the expression levels of 11 transcription factors that may respond to environmental stimuli. Six of the 53 EBP homologs were expressed at significantly higher levels at 12 h of development than during growth. Three were previously unknown genes, and they were inactivated to look for effects on fruiting body development. One knockout mutant produced fruiting bodies of abnormal shape that depended on the composition of the medium.

General information
State: Published
Organisations: Stanford University, Syracuse University, Monsanto Company
Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus

Formation of spatial patterns of cells from a mass of initially identical cells is a recurring theme in developmental biology. The dynamics that direct pattern formation in biological systems often involve morphogenetic cell movements. An example is fruiting body formation in the gliding bacterium Myxococcus xanthus in which an unstructured population of identical cells rearranges into an asymmetric, stable pattern of multicellular fruiting bodies in response to starvation. Fruiting body formation depends on changes in organized cell movements from swarming to aggregation. The aggregation process is induced and orchestrated by the cell-surface associated 17 kDa C-signal protein. C-signal transmission depends on direct contact between cells. Evidence suggests that C-signal transmission is geometrically constrained to cell ends and that productive C-signal transmission only occurs when cells engage in end-to-end contacts. Here, we review recent progress in the understanding of the pattern formation process that leads to fruiting body formation. Gliding motility in M. xanthus involves two polarly localized gliding machines, the S-machine depends on type IV pili and the A-machine seems to involve a slime extrusion mechanism. Using time-lapse video microscopy the gliding motility parameters controlled by the C-signal have been identified. The C-signal induces cells to move with increased gliding speeds, in longer gliding intervals and with decreased stop and reversal frequencies. The combined effect of the C-signal dependent changes in gliding motility behaviour is an increase in the net-distance travelled by a cell per minute. The identification of the motility parameters controlled by the C-signal in combination with the contact-dependent C-signal transmission mechanism have allowed the generation of a qualitative model for C-signal induced aggregation. In this model, the directive properties of the C-signal are a direct consequence of the contact-dependent signal-transmission mechanism, which is a local event involving direct contact between cells that results in a global organization of cells. This pattern formation process does not depend on a diffusible substance. Rather it depends on a cell-surface associated signal to direct the cells appropriately.

(C) 2003 Elsevier B.V. All rights reserved.
Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus

A recurring theme in morphogenesis is the coupling of the expression of genes that drive morphogenesis and the morphogenetic process per se. This coupling ensures that gene expression and morphogenesis are carried out in synchrony. Morphogenesis of the spore-filled fruiting bodies in Myxococcus xanthus illustrates this coupling in the construction of a multicellular structure. Fruiting body formation involves two stages: aggregation of cells into mounds and the position-specific sporulation of cells that have accumulated inside mounds. Developmental gene expression propels these two processes. In addition, gene expression in individual cells is adjusted according to their spatial position.

Progress in the understanding of the cell surface-associated C-signal is beginning to reveal the framework of an intercellular signalling system that allows the coupling of gene expression and multicellular morphogenesis. Accumulation of the C-signal is tightly regulated and involves transcriptional activation of the csgA gene and proteolysis of the full-length CsgA protein to produce the shorter cell surface-associated 17 kDa C-signal protein. The C-signal induces aggregation, sporulation and developmental gene expression at specific thresholds. The ordered increase in C-signalling levels, in combination with the specific thresholds, allows the C-signal to induce these three processes in the correct temporal order. The contact-dependent C-signal transmission mechanism, in turn, guarantees that C-signalling levels reflect the spatial position of individual cells relative to other cells and, thus, allows the cells to decode their spatial position during morphogenesis. By this mechanism, individual cells can tailor their gene expression profile to one that matches their spatial position. In this scheme, the molecular device that keeps gene expression in individual cells in register with morphogenesis is the C-signalling system, and the morphological structure, which is assessed, is the spatial position of individual cells relative to that of other cells.

General information
State: Published
Organisations: University of Southern Denmark
Contributors: Søgaard-Andersen, L., Overgaard, M., Lobedanz, S., Ellehauge, E., Jelsbak, L., Rasmussen, A. A.
Publication date: 2003
Peer-reviewed: Yes

Publication information
Journal: Molecular Microbiology
Volume: 48
Issue number: 1
ISSN (Print): 0950-382X
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.71 SJR 2.384 SNIP 1.043
Web of Science (2017): Impact factor 3.816
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.7 SJR 2.631 SNIP 0.987
Web of Science (2016): Impact factor 3.898
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.95 SJR 2.956 SNIP 1.094
Web of Science (2015): Impact factor 3.761
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.25 SJR 3.184 SNIP 1.218
Web of Science (2014): Impact factor 4.419
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.9 SJR 3.652 SNIP 1.301
Web of Science (2013): Impact factor 5.026
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.78 SJR 3.433 SNIP 1.267
Web of Science (2012): Impact factor 4.961
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.72 SJR 3.475 SNIP 1.285
Web of Science (2011): Impact factor 5.01
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 3.678 SNIP 1.203
Web of Science (2010): Impact factor 4.819
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.981 SNIP 1.333
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.974 SNIP 1.222
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.868 SNIP 1.252
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 4.331 SNIP 1.37
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 4.094 SNIP 1.358
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 3.707 SNIP 1.345
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 3.833 SNIP 1.349
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 3.984 SNIP 1.448
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 4.07 SNIP 1.475
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 4.274 SNIP 1.58
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 4.323 SNIP 1.563
Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus

In response to starvation, an unstructured population of identical Myxococcus xanthus cells rearranges into an asymmetric, stable pattern of multicellular fruiting bodies. Central to this pattern formation process are changes in organized cell movements from swarming to aggregation. Aggregation is induced by the cell surface-associated C-signal. To understand how aggregation is accomplished, we have analyzed how C-signal modulates cell behavior. We show that C-signal induces a motility response that includes increases in transient gliding speeds and in the duration of gliding intervals and decreases in stop and reversal frequencies. This response results in a switch in cell behavior from an oscillatory to a unidirectional type of behavior in which the net-distance traveled by a cell per minute is increased. We propose that the C-signal-dependent regulation of the reversal frequency is essential for aggregation and that the remaining C-signal-dependent changes in motility parameters contribute to aggregation by increasing the net-distance traveled by starving cells per minute. In our model for symmetry-breaking and aggregation, C-signal transmission is a local event involving direct contacts between cells that results in a global organization of cells. This pattern formation mechanism does not require a diffusible substance or other actions at a distance. Rather it depends on contact-induced changes in motility behavior to direct cells appropriately.
Pattern formation: fruiting body morphogenesis in Myxococcus xanthus

When Myxococcus xanthus cells are exposed to starvation, they respond with dramatic behavioral changes. The expansive swarming behavior stops and the cells begin to aggregate into multicellular fruiting bodies. The cell-surface-associated C-signal has been identified as the signal that induces aggregation. Recently, several of the components in the C-signal transduction pathway have been identified and behavioral analyses are beginning to reveal how the C-signal modulates cell behavior. Together, these findings provide a framework for understanding how a cell-surface-associated morphogen induces pattern formation.
The cell-surface associated, intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis

Fruiting body formation in Myxococcus xanthus depends on ordered changes in cell movements from swarming to aggregation in response to starvation. We show that appropriately starved individual cells change behavior during fruiting body formation. Specifically, from the time of initiation of aggregation, individual wild-type cells began to move with increased gliding speeds, the duration of the mean gliding interval increased, and the stop frequency decreased whereas the duration of the mean stop interval and the reversal frequency remained unchanged. Mutants lacking the cell surface-associated, intercellular C-signal (csgA mutants) failed to aggregate. Likewise, appropriately starved individual csgA cells did not change their behavior during development. In the absence of other cell–cell interactions, the motility defect of individual csgA cells was corrected in a time- and concentration-dependent manner after C-signaling was reestablished by exogenous MalE-CsgA protein. The C-signal induced stimulation of motility depended on the cytoplasmic Frz signal transduction system. We propose that C-signal instructs cells to move with high speed and low stop and reversal frequencies into aggregation centers during development.