Application of Parameter Estimation for Diffusions and Mixture Models

The first part of this thesis proposes a method to determine the preferred number of structures, their proportions and the corresponding geometrical shapes of an m-membered ring molecule. This is obtained by formulating a statistical model for the data and constructing an algorithm which samples from a posterior distribution. The sampling algorithm is constructed from a Markov chain which allows the dimension of each sample to vary, this is obtained by utilizing the Reversible jumps methodology proposed by Peter Green. Each sample is constructed such that the corresponding structures are physically realizable; this is obtained by utilizing the geometry of the structures. Determining the shapes, number of structures and proportions for an m-membered ring molecule is of interest, since these quantities determine the chemical properties. The second part of this thesis deals with parameter estimation for diffusions. The first idea is in an optimal way to incorporate prior information in the estimation equation $G(X_{t1}; \ldots; X_{tn}) = 0$, used to nd an estimator of the unknown parameter θ. The general idea is to introduce an new optimality criterion which optimizes the correlation with the posterior score function. From an application point of view this methodology is easy to apply, since the optimal estimating function $G(X_{t1}; \ldots; X_{tn})$ is equal to the classical optimal estimating function, plus a correction term which takes into account the prior information. The methodology is particularly useful in situations where prior information is available and only few observations are present. The resulting estimators in some sense have better properties than the classical estimators. The second idea is to formulate Michael Sørensen's method "prediction based estimating function" for measurement error models. This is obtained by constructing an estimating function through projections of some chosen function of Y_{t+1} onto functions of previous observations $Y_{t}; \ldots; Y_{10}$. The process of interest X_{t+1} is partially observed through a measurement equation $Y_{t+1} = h(X_{t+1}) + \text{noise}$, where $h(\cdot)$ is restricted to be a polynomial. Through a simulation study we compare for the CIR process the obtained estimator with an estimator derived from utilizing the extended Kalman filter. The simulation study shows that the two estimation methods perform equally well.
Bayesian methods for the conformational classification of eight-membered rings

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Pérez, J. (Ekstern), Nolsøe, K. (Intern), Kessler, M. (Ekstern), García, L. (Ekstern), Pérez, E. (Ekstern), Serrano, J. L. (Ekstern)
Pages: 585-594
Publication date: 2005
Main Research Area: Technical/natural sciences

Publication information
Journal: Acta Crystallographica. Section B: Structural Science
Volume: 61
ISSN (Print): 0108-7681
Ratings:
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.14 SJR 0.68 SNIP 0.934
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.871 SNIP 1.48 CiteScore 2.37
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.834 SNIP 2.459 CiteScore 1.94
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.677 SNIP 0.989
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.921 SNIP 1.392
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.969 SNIP 1.604
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.539 SNIP 1.486
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.428 SNIP 1.038
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.772 SNIP 1.235
Scopus rating (2007): SJR 1.021 SNIP 1.406
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.994 SNIP 1.597
Scopus rating (2005): SJR 2.951 SNIP 3.672
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.436 SNIP 3.262
Scopus rating (2003): SJR 1.385 SNIP 2.219
Scopus rating (2002): SJR 1.258 SNIP 1.647
Scopus rating (2001): SJR 1.19 SNIP 1.77
Scopus rating (2000): SJR 1.009 SNIP 1.616
Scopus rating (1999): SJR 0.977 SNIP 1.436
Original language: English
DOIs:
Solid state conformational classification of eight-membered rings
A statistical classification of the solid state conformation in the title complexes using data retrieved from the Cambridge Structural Database (CSD) has been made. Phosphate and phosphinate complexes show a chair conformation preferably. In phosphonate complexes, the most frequent conformations are found to be boat–chair, chair and boat–boat; in all the boat–chair cases, the phosphorus atoms appear connected by a bridging carbon atom.

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Pérez, J. (Ekstern), García, L. (Ekstern), Kessler, M. (Ekstern), Nolsøe, K. (Intern), Pérez, E. E. (Ekstern), Serrano, J. (Ekstern), Martínez, J. F. (Ekstern), Carrascosa, R. L. (Ekstern)
Pages: 2432-2436
Publication date: 2005
Main Research Area: Technical/natural sciences

Publication information
Journal: Inorganica Chimica Acta
Volume: 358
Issue number: 7
ISSN (Print): 0020-1693
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.495 SNIP 0.62 CiteScore 1.77
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.57 SNIP 0.671 CiteScore 1.88
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.556 SNIP 0.772 CiteScore 1.92
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.604 SNIP 0.752 CiteScore 1.97
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.616 SNIP 0.774 CiteScore 1.75
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.656 SNIP 0.91 CiteScore 1.99
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.703 SNIP 0.874
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.826 SNIP 1.005
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.791 SNIP 0.864
Scopus rating (2007): SJR 0.772 SNIP 1.028
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.7 SNIP 0.92
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.78 SNIP 0.803
Estimating Functions with Prior Knowledge, (EFPK) for diffusions

General information

State: Published
Organisations: Department of Informatics and Mathematical Modeling, Mathematical Statistics
Authors: Nolsøe, K. (Intern), Kessler, M. (Ekstern), Madsen, H. (Intern)
Publication date: 2003

Publication information

Original language: English
Main Research Area: Technical/natural sciences
Electronic versions: imm3035.pdf
Source: orbit
Source-ID: 58714
Publication: Research - peer-review › Report – Annual report year: 2003

Projects:

Estimationsteori for stokastiske differentialligninger

Department of Informatics and Mathematical Modeling

Period: 01/10/2002 → 15/01/2007
Number of participants: 6
Phd Student:

Nolsøe, Kim (Intern)
Supervisor:

Kessler, Mathieu (Ekstern)
Main Supervisor:

Madsen, Henrik (Intern)
Examiner:

Nielsen, Bo Friis (Intern)
Jørgensen, Bent (Intern)
Rydén, Tobias (Ekstern)

Financing sources

Source: Internal funding (public)
Name of research programme: DTU-lønnet stipendie
Project: PhD