Antiviral immunity in fish – functional analysis using DNA vaccination as a tool

In fish, DNA vaccines encoding the glycoproteins (G proteins) of the salmonid rhabdoviruses VHSV and IHNV have proved very efficient under experimental conditions. Nano-gram amounts of plasmid DNA can induce long-lasting protective immunity when delivered by intramuscular injection in rainbow trout fingerlings. Vaccination of fish at an early stage appears advantageous, since larger fish require higher doses of vaccine to be protected. Even in fish with an average size of 0.5 g at the time of vaccination, good protection can be obtained. Interestingly, immunity is established already a few days after vaccination and cross-challenge experiments have revealed that protection in the early phase is non-specific. Later on, protection becomes very specific in terms of virus species. The protection in the early non-specific phase is related to interferon induced defence mechanisms whereas specific antibodies and cellular components both play a role in the long lasting protection. The similarity of the functional immune response profile to that induced by a natural virus infection is striking and is most likely one of the major reasons for the efficacy of the rhabdovirus DNA vaccines. Although other elements like CpG motifs in the plasmid backbone sequence might play a role, the viral G protein appears to have an inherent ability to stimulate innate immune mechanisms by receptors and pathways that still remain to be characterized in detail. Immunity to VHS in rainbow trout can be induced by DNA vaccination across a temperature range of at least 5-15°C. Interestingly, the initial non-specific phase is significantly prolonged at lower temperatures, hereby ensuring protection despite a slow activation of adaptive mechanisms. Expression of the rhabdovirus G protein on the surface of transfected muscle cells induces a histologically visible local inflammatory reaction with higher doses of VHSV G DNA vaccine. Cell surface expression may be important for a proper activation of the fish immune system, since blocking of the intracellular trafficking of the expressed glycoprotein G-gene interferes with protection. It may be anticipated that the viral G protein acts like a PAMP (pathogen associated molecular pattern), but it remains to be determined which PRRs (pattern recognition receptors) that may be involved in the recognition of the G protein. Recent data from DNA vaccination trials with variant forms of the G protein gene suggest that the structural requirements for antigenicity are different from the requirements for immunogenicity.
Use of DNA vaccination for determination of onset of adaptive immunity in rainbow trout fry

Vaccine producers often recommend a minimum size of 5g for vaccination of rainbow trout, but implementation of prophylactic vaccination in smaller sized fish would be an advantage for several infectious diseases. To implement a cost efficient vaccination strategy, it is important to know the duration and nature of the protective immunity induced by the vaccines in the fish. The present work aimed at determination of the smallest size at which specific immunity could be induced in rainbow trout fry by DNA vaccination against viral haemorrhagic septicaemia (VHS). Earlier experiments revealed that intramuscular injection of the DNA vaccine encoding the viral glycoprotein G induced protective immunity to VHS in rainbow trout fry of 0.5g. However, the vaccine is known to induce both innate and adaptive protection. The present work therefore aimed at determination of which type of protection the DNA vaccine induced in such early life stages of rainbow trout. Vaccination trials were performed with fry at average sizes of 0.25 g and 0.5 g respectively and included both the homologous VHSV G-gene vaccine and a heterologous DNA vaccine encoding the G-protein of infectious haematopoietic necrosis virus (IHNV). The fish were challenged by immersion at different times post vaccination. Protective immunity was induced in both sizes of fish, but whereas clear-cut specific protection was evident in the fish vaccinated at 0.5g, the results suggested that the protection in the fish vaccinated at 0.25 g was mainly due to innate cross-reactive antiviral mechanisms of shorter duration. The critical size for induction of an adaptive immune response in rainbow trout to this type of vaccination thus appears to be between 0.25 and 0.5g. This work was supported by the “DAFINET” grant from the Danish Council for Strategic Research.

General information
State: Published
Organisations: National Veterinary Institute, Section for Immunology and Vaccinology, Section for Virology
Authors: Rasmussen, J. S. (Intern), Lorenzen, E. (Intern), Kjær, T. E. (Intern), Einer-Jensen, K. (Intern), Lorenzen, N. (Intern)
Pages: 1674-1674
Publication date: 2013
Conference: 1st International Conference of Fish and Shellfish Immunology (VIGO 2013), Vigo, Spain, 25/06/2013 - 25/06/2013
Main Research Area: Technical/natural sciences

Publication information
Journal: Fish and Shellfish Immunology
Volume: 34
Issue number: 6
ISSN (Print): 1050-4648
Ratings:
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Web of Science (2017): Indexed Yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 3.36 SJR 1.114 SNIP 1.16
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): SJR 1.268 SNIP 1.171 CiteScore 3.19
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): SJR 1.138 SNIP 1.089 CiteScore 2.92
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): SJR 1.001 SNIP 1.149 CiteScore 3.11
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): SJR 1.151 SNIP 1.174 CiteScore 3.02
- ISI indexed (2012): ISI indexed yes
DNA vaccination of small rainbow trout fry against VHSV

Small rainbow trout fry were DNA vaccinated by intramuscular injection at 0.25g and other fish later at 0.5g. Vaccine groups included pcDNA3-vhsG, heterologous vaccine (pcDNA3-ihnG), empty vector (pcDNA3) and unhandled fish. Fry vaccinated at 0.25g were challenged with VHSV by immersion at 3wpv, 11wpv and 21wpv. The challenge at 3wpv was started 1wpv, however as no mortality was observed, the fish were re-challenged 3wpv using a modified setup. Fry vaccinated at 0.5g were challenged with VHSV by immersion at11wpv.

By early challenge (3wpv) of fish vaccinated at 0.25g both homologous and heterologous vaccines induced unspecific protection (10 % mortality for both). Challenge 11wpv showed waning unspecific protection (60 % mortality) but also a poor specific protection (30 % mortality). By challenge 21wpv, hardly no specific (75 % mortality) or unspecific (81 % mortality) protection was observed. In contrast, fish vaccinated at 0.5 g and challenged at 11wpv showed good specific protection.

The results indicate that DNA vaccination of very small fry (0.25g) can induce an early innate response. However a late adaptive immune response is apparently not established. Vaccination of fry at 0.5g induces an adaptive response like in larger fish.

The experiment was repeated with same vaccination groups. Rainbow trout fry were vaccinated at 0.25g followed by challenge with homologous or heterologous virus at 13 dpv, 11 wpv and 21 wpv. At 13 dpv unspecific protection was induced with both homologous and heterologous challenge (5% mortality). At 11 wpv unspecific protection with 30 % mortality was observed. At 21 wpv protection against VHSV had dropped further (50 % mortality). Protection against IHNV was better (10 % mortality) but equal for both homologous and heterologous vaccines confirming previous results, that vaccination of fry at 0.25g induces unspecific protection but no adaptive response.
Temperature influences the expression profiling of immune response genes in rainbow trout following DNA vaccination and VHS virus infection

A DNA vaccine encoding the glycoprotein (G) genes of the salmonid rhabdovirus viral haemorrhagic septicaemia virus (VHSV) has proven highly efficient against the disease caused by this virus in rainbow trout (Oncorhynchus mykiss). Several studies have demonstrated that this vaccine induces both an early unspecific antiviral response as well as a long-lasting specific protection. However, temperature appears to influence immune response with respect to the nature and duration of the protective mechanisms. In this study, groups of fish were temperature acclimated, vaccinated and challenged at three different temperatures (5, 10 and 15°C). Tissue and organ samples were collected at numerous time points post vaccination (pv) and post viral challenge (pch). Then, gene expression levels of a two immune genes (Vig-1 and Mx3) involved in unspecific antiviral response mechanisms were determined by Q-PCR. The expression profiles appeared similar for the two genes in terms of temperature dependency with a faster induction and shorter duration at the higher temperature. In order to analyze the temperature effect on the relative expression profiles across a larger set of immune genes time points displaying similar Mx3 expression levels post vaccination were identified: 4 days pv (15°C); 7 days pv (10°C); 23 days pv (5°C), respectively. A targeted trout immune gene array including probes for VHSV genes was used for analysis of vaccinated vs control fish per temperature (4-5 replicates). Temperature altered the transcriptome response to the viral challenge, and the number of responsive genes increased at higher temperature: 51 (5°C), 64 (10°C) and 72 (15°C), respectively, indicating that fish kept at higher temperature may have an enhanced immune response. Additional correlation analysis allowed identification of genes that were significantly up- or down regulated synchronous with expression of the vaccine G gene. These findings encompass that for example in fish kept at 5°C, putative CD3, CD4, CD9, CD28, CD53, CD63, CD83, CD84 were up regulated, while CD59, CD83 were down regulated, potentially indicating balancing mechanism of the immune system. An experimental VHSV challenge was performed 7 weeks pv.

Similar protection levels of approximately 10% mortality were found for the vaccinated fish, regardless of temperature during immunisation and challenge, whereas the course and level of mortality among the controls were temperature dependent. At day 5 post infection, the number of differentially regulated genes in the livers of vaccinated versus control fish was highest in fish kept at 10°C and lowest in fish at 5°C. This difference presumably reflects the temperature dependent progression of the disease in the controls. Further analysis of the obtained data with respect to gene regulation pathways as a result of DNA vaccination and/or viral infection will be presented.

The Protective Mechanisms Induced by a DNA Vaccine in Fish Depend on Temperature

In veterinary vaccinology, DNA-vaccines encoding the viral glycoproteins of viral haemorrhagic septicaemia virus (VHSV) and infectious haematoipoietic necrosis virus (IHNV) have proved highly efficient in fish under experimental conditions. In
the early phase following vaccination, innate cross-protective mechanisms are dominating but the protection becomes highly specific within 3–4 weeks at 12–15 °C. Temperature is known as an important external parameter affecting the immune response in fish and the present study aimed at characterizing temperature effects on the immune response to a VHS DNA vaccine. Rainbow trout fingerlings acclimated at 5, 10 or 15 °C, were given an intramuscular injection of 1 μg purified plasmid DNA and challenged with virulent VHSV 9 or 36–40 days later. The vaccine protected the fish well at all three temperatures, however the non-specific mechanisms lasted for a longer period of time at lower temperatures, hereby apparently compensating for a delayed adaptive response. At 36 dpv fish kept at 5 °C thus had no detectable response of neutralising antibodies while 67% of the fish kept at 15 °C had seroconverted. Immunohistochemical time-course studies of the injection site of vaccinated fish also showed a clear effect of temperature: in fish maintained at 15 °C the vhsG-protein occurred earlier on the surface of transfected myocytes than in fish kept at the lower temperatures and the inflammatory response clearing away these myocytes similarly arose earlier at high temperature. Long persistence of transfected myocytes expressing the vaccine antigen might explain the prolonged stimulation of innate protective mechanisms at low temperature. Quantitative gene expression profiles suggested interferon related mechanisms as the explanation for the early protection and also supported their temperature dependent kinetics.

General information
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute
Authors: Lorenzen, E. (Intern), Einer-Jensen, K. (Intern), Rasmussen, J. S. (Intern), Christensen, M. B. (Intern), Collet, B. (Ekstern), Secombes, C. J. (Ekstern), Lorenzen, N. (Intern)
Pages: 392-392
Publication date: 2011
Main Research Area: Technical/natural sciences

Publication information
Journal: Scandinavian Journal of Immunology
Volume: 73
Issue number: 4
ISSN (Print): 0300-9475
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.03 SJR 0.951 SNIP 0.646
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.93 SNIP 0.684 CiteScore 1.97
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.898 SNIP 0.666 CiteScore 1.91
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.86 SNIP 0.712 CiteScore 2.05
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.88 SNIP 0.749 CiteScore 2.16
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.854 SNIP 0.66 CiteScore 2.06
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.844 SNIP 0.622
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.962 SNIP 0.662
Web of Science (2009): Indexed yes
Experimental vaccination of small turbot against bacterial and viral pathogens

General information
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute, Bacteriology & Pathology, Division of Veterinary Diagnostics and Research, Fishlab, Intervet/Schering-Plough Animal Health, University of Copenhagen
Publication date: 2010
Event: Abstract from Dafinet-Scofda workshop, Copenhagen, Denmark.
Main Research Area: Technical/natural sciences

Expression Profiling of Immune Response Genes in Rainbow Trout Following DNA Vaccination and VHS Virus Infection

General information
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute
Authors: Rasmussen, J. S. (Intern), Christensen, M. B. (Intern), Einer-Jensen, K. (Intern), Lorenzen, E. (Intern), Lorenzen, N. (Intern)
Publication date: 2010
Event: Poster session presented at Symposium of the European Organisation of Fish Immunology, Viterbo, Italy.
Main Research Area: Technical/natural sciences

N-Linked Glycans on the Viral Glycoprotein are not Required for Induction of Protective Immunity to VHSV when Delivered as a DNA Vaccine

**General information**
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute
Authors: Einer-Jensen, K. (Intern), Lorenzen, E. (Intern), Rasmussen, J. S. (Intern), Lorenzen, N. (Intern)
Publication date: 2010
Event: Abstract from 8th International Symposium on Viruses of Lower Vertebrates, Santiago de Compostela, Spain.
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 273922
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2010

Protection Against Viral Haemorrhagic Septicemia Virus (VHSV) in Rainbow Trout Using a DNA Vaccine with MX1 Promotor Controlled Expression of the Viral G Protein

**General information**
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute, Marine Laboratory, University of Aberdeen
Authors: Einer-Jensen, K. (Intern), Rasmussen, J. S. (Intern), Collet, B. (Ekstern), Secombes, C. (Ekstern), Lorenzen, E. (Intern), Lorenzen, N. (Intern)
Publication date: 2010
Event: Abstract from Symposium of the European Organisation of Fish Immunology, Viterbo, Italy.
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 273896
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2010

Temperature effects on vaccine induced immunity to viruses in fish

Abstract In poikilothermic vertebrates such as teleost fishes, temperature affects all physiological processes including host-pathogen interactions like immune response and propagation of infection. Whether an infection with a pathogenic virus in fish results in development of clinical disease often depends on the balance between virus multiplication and anti-viral immune reactions in the host. Water temperature is one of the most important factors influencing the balance between the fish and its environment. Usually, an optimal immune response of a particular fish species is obtained at its normal summer temperature whereas low temperatures may be immunosuppressive. Although innate and adaptive immune response mechanisms should be considered as integrated parts of the immunedefence, low temperatures appears to affect (inhibit) adaptive mechanisms more than innate mechanisms. This might represent a problem in terms of inducing a protective immune response by vaccination in aquaculture, since it is often desirable to vaccinate fish during autumn, winter, or spring. In experimental vaccination trials with rainbow trout (Oncorhynchus mykiss) using a DNA-vaccine encoding the viral glycoprotein of viral haemorrhagic septicaemia virus (VHSV), non-specific as well as specific immune mechanisms seemed to be delayed at low temperature. At five weeks post vaccination fish kept at 5°C had no detectable response of neutralising antibodies while two thirds of the fish kept at 15°C had sero-converted. While protective immunity was still established at both temperatures, specificity analysis suggested that protection at the lower temperature was mainly due to non-specific innate antiviral mechanisms, which appeared to last longer at low temperature. This was presumably related to a prolonged persistence of the vaccine. In DNA vaccination trials with spring viremia of carp (SVC) in common carp (Cyprinus carpio), protection at low temperature (10°C) appeared to require considerably longer time to develop compared to at 19°C, stressing that determination of optimal vaccination strategies in terms of temperature related effects need to be based on experimental evidence with the actual host and pathogen species rather on general principles.

**General information**
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute, Veterinary Research Institute, Brno, Czech Republic
Publication date: 2010
Event: Abstract from 8th International Symposium on Viruses of Lower Vertebrates, Santiago de Compostela, Spain.
Main Research Area: Technical/natural sciences
Electronic versions:
Source: orbit
Source-ID: 273834
DNA Vaccines against Viral Diseases: Basic Immunological Aspects and Applied Perspectives

General information
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute
Authors: Lorenzen, N. (Intern), Lorenzen, E. (Intern), Rasmussen, J. S. (Intern), Einer-Jensen, K. (Intern)
Pages: 16-18
Publication date: 2009
Conference: 5th International Symposium of the Japanese-Society-of-Fish-Pathology, Tokyo, Japan, 01/01/2008
Main Research Area: Technical/natural sciences

Publication information
Journal: Gyobyo Kenkyu
Volume: 44
Issue number: 1
ISSN (Print): 0388-788X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.375 SNIP 0.706 CiteScore 0.87
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.359 SNIP 0.46 CiteScore 0.66
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.263 SNIP 0.517 CiteScore 0.57
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.292 SNIP 0.425 CiteScore 0.52
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.537 SNIP 0.628 CiteScore 0.88
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.584 SNIP 0.57 CiteScore 0.74
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.38 SNIP 0.677
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.308 SNIP 0.544
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.281 SNIP 0.342
Scopus rating (2007): SJR 0.387 SNIP 0.832
Scopus rating (2006): SJR 0.688 SNIP 0.582
Scopus rating (2005): SJR 0.612 SNIP 0.666
Scopus rating (2004): SJR 0.679 SNIP 0.532
Scopus rating (2003): SJR 0.503 SNIP 0.621
Scopus rating (2002): SJR 0.788 SNIP 0.971
Scopus rating (2001): SJR 1.167 SNIP 0.841
Scopus rating (2000): SJR 0.869 SNIP 0.781
Scopus rating (1999): SJR 0.935 SNIP 0.691
Original language: English
Source: orbit
Source-ID: 262424
Functional demonstration of adaptive immunity in zebrafish using DNA vaccination.

Due to the well characterized genome, overall highly synteny with the human genome and its suitability for functional genomics studies, the zebrafish is considered to be an ideal animal model for basic studies of mechanisms of diseases and immunity in vertebrates including humans. While several studies have documented existence of a classical innate immune response, there is mainly indirect evidence of functional adaptive immunity. To address this aspect, groups of zebrafish were vaccinated with DNA-vaccines against the rhabdoviruses VHSV, IHNV and SVCV. Seven weeks later, the fish were challenged with SVCV by immersion. Despite some variability between replicate aquaria, there was a protective effect of the homologous vaccine and no effect of the heterologous vaccines. The results therefore confirm the existence of not only a well developed but also a fully functional adaptive immune system in zebrafish.

General information
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute, Veterinary Research Institute, Brno
Publication date: 2009
Event: Abstract from Scofda and Dafinet Symposium, University of Copenhagen, Faculty of Life Sciences, .
Main Research Area: Technical/natural sciences
Electronic versions:
N Lorenzen Abstract DAFINET-Nov09.doc
Source: orbit
Source-ID: 255112
Publication: Research › Conference abstract for conference – Annual report year: 2009

Interference of an ERM-vaccine with a VHS-DNA vaccine in rainbow trout

Simultaneous vaccination of fish against several diseases is often desirable in order to minimise cost and handling of the fish. Intramuscular DNA-vaccination of rainbow trout against viral haemorrhagic septicaemia virus (VHSV) has proved to provide very good protection. However, preliminary results showed that intraperitoneal injection of a commercial vaccine against Enteric Redmouth Disease (ERM) based on formalin-killed bacteria in oil adjuvant immediately followed by intramuscular injection of an experimental DNA-vaccine against VHSV, decreased the protective effect of the DNA-vaccine against challenge with VHSV 11 weeks post vaccination (pv). This experiment was performed with rainbow trout of 30 g injected with 0.5 g VHS-DNA vaccine. The experiment was later repeated with smaller fish (2.5g) and using two different doses of DNA-vaccine, 1 g and 0.05 g. Both doses provided good protection in the control groups not given the ERM vaccine. But among fish given both vaccines, those vaccinated with the lower DNA dose had significantly higher mortality when challenged with VHSV 9 weeks pv. When challenged with VHSV 8 days pv, not even the 1 µg DNA dose protected such fish. A plasmid dose of 0.05 g VHSV DNA vaccine would normally induce good protection in small fish (2-3 g). To ensure complete protection in larger fish, higher doses are needed. This could explain the negative effect of ERM vaccination observed in the 30 g fish described above. It thus appears, that if the fish are vaccinated with a VHS-DNA vaccine dose according to their size, a simultaneous intraperitoneal vaccination against ERM can compromise the protective effect of the DNA-vaccine. The negative effect appears to be strongest in the early phase following vaccination. The immune mechanisms behind this interference will be discussed.

General information
State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute, Marine Scotland, Norwegian School of Veterinary Medicine
Authors: Lorenzen, E. (Intern), Einer-Jensen, K. (Intern), Rasmussen, J. S. (Intern), Lorenzen, N. (Intern), Ellis, T. (Ekstern), McLauchlan, P. (Ekstern), Evensen, Ø. (Ekstern)
Publication date: 2009
Event: Abstract from The ontogeny of the fish immune system : Abildgaard Symposium & Research School Scofda, University of Copenhagen, Faculty of Life Sciences, .
Main Research Area: Technical/natural sciences
Electronic versions:
EllenLorenzen_ERMvhs co-vaccination.rtf[1].doc
Source: orbit
Source-ID: 255110
Publication: Research › Conference abstract for conference – Annual report year: 2009

The protective mechanisms induced by a fish rhabdovirus DNA vaccine depend on temperature

DNA vaccines encoding the viral glycoproteins of viral haemorrhagic septicaemia virus (VHSV) and infectious haematopoietic necrosis Virus (IHNV) have proved highly efficient in rainbow trout (Onchorhynchus mykiss) under...
experimental conditions. Non-specific as well as specific immune mechanisms seem to be activated. Temperature is an important external parameter affecting the immune response in fish. The present study aimed at determining the effectiveness of a DNA vaccine against VHS at different temperatures. Rainbow trout fingerlings acclimated at 5 degrees C, 10 degrees C or 15 degrees C, were given an intramuscular injection of 1 μg purified plasmid DNA and challenged with virulent VHSV 8 or 36-40 days later. The vaccine protected the fish well at all three temperatures, but the involvement of innate and adaptive mechanisms differed: at low temperature, non-specific protection lasted longer and at 36 dpv fish kept at 5 degrees C had no detectable response of neutralizing antibodies while 67% of the fish kept at 15 degrees C had seroconverted. Induction of Mx as measured in liver samples was delayed at 5 degrees C with no detectable response 7 dpv whereas fish maintained at 10 C had significantly elevated levels of Mx3-transcripts at that time point. Immunohistochemical studies of the injection site of vaccinated fish also showed a clear effect of temperature: in fish maintained at 15 degrees C the vhsG-protein appeared earlier on the surface of transfected myocytes and the inflammatory response clearing away these myocytes arose earlier Compared to fish kept at the lower temperatures of 5 and 10 degrees C.

**General information**

State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute
Authors: Lorenzen, E. (Intern), Einer-Jensen, K. (Intern), Rasmussen, J. S. (Intern), Kjær, T. E. (Intern), Collet, B. (Ekstern), Secombes, C. (Ekstern), Lorenzen, N. (Intern)
Pages: 3870-3880
Publication date: 2009
Main Research Area: Technical/natural sciences

**Publication information**

Journal: Vaccine
Volume: 27
Issue number: 29
ISSN (Print): 0264-410X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.33 SJR 1.956 SNIP 1.155
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 2.068 SNIP 1.259 CiteScore 3.45
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.05 SNIP 1.231 CiteScore 3.57
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.73 SNIP 1.126 CiteScore 3.43
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.634 SNIP 1.159 CiteScore 3.56
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.74 SNIP 1.274 CiteScore 3.86
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.636 SNIP 1.207
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.428 SNIP 1.21
DNA-vaccines encoding the viral glycoproteins of viral haemorrhagic septicemia virus (VHSV) and infectious haematopoietic necrosis virus (IHNV) have proved highly efficient in rainbow trout (Oncorhynchus mykiss) under experimental conditions. In the early phase following vaccination, innate cross-protective mechanisms are dominating but the protection becomes highly specific within 3-4 weeks at 12-15°C. Temperature is known as an important external parameter affecting the immune response in fish and the present study aimed at characterizing temperature effects on the immune response to a VHS DNA vaccine. Rainbow trout fingerlings acclimated at 5°C, 10°C or 15°C, were given an intramuscular injection of 1g purified plasmid DNA and challenged with virulent VHSV 9 or 36-40 days later. The vaccine protected the fish well at all three temperatures, however the non-specific mechanisms lasted for a longer period of time at lower temperatures, hereby apparently compensating for a delayed adaptive response. At 36 dpv fish kept at 5°C thus had no detectable response of neutralising antibodies while 67% of the fish kept at 15°C had seroconverted.

Immunohistochemical time-course studies of the injection site of vaccinated fish also showed a clear effect of temperature: in fish maintained at 15°C the vhsG-protein occurred earlier on the surface of transfected myocytes than in fish kept at the lower temperatures and the inflammatory response clearing away these myocytes similarly arose earlier at high temperature. Long persistence of transfected myocytes expressing the vaccine antigen might explain the prolonged stimulation of innate protective mechanisms at low temperature. From a practical point of view the results suggest that DNA vaccination against rhabdoviruses might be applied as a prophylactic measure within a broad temperature range.

**General information**

State: Published
Organisations: Section of Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute, University of Aberdeen
Authors: Lorenzen, N. (Intern), Lorenzen, E. (Intern), Einer-Jensen, K. (Intern), Rasmussen, J. S. (Intern), Kjær, T. E. (Intern), Collet, B. (Ekstern), Secombes, C. J. (Ekstern)
Publication date: 2009
Event: Abstract from 11th Congress of the International Society of Developmental and Comparative Immunology (ISDCI), Prague, Poland.
Main Research Area: Technical/natural sciences

**Electronic versions:**

N Lorenzen-abstract2-ISDCI09.doc
Source: orbit
Source-ID: 255127
Projects:

Delivery of small interfering RNAs (soRNAs) for treatment of viral disease in fish aquaculture

National Veterinary Institute
Period: 01/11/2009 → 29/01/2014
Number of participants: 7
Phd Student:
Larashati, Sekar (Intern)
Supervisor:
Rasmussen, Jesper Skou (Intern)
Schyth, Brian Dall (Intern)
Main Supervisor:
Lorenzen, Niels (Intern)
Examiner:
Heegaard, Peter Mikael Helweg (Intern)
Collet, Bertrand (Ekstern)
Pedersen, Finn Skou (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Stipendie fra udlandet
Project: PhD

Danish Fish Immunology Research Network
Division of Poultry, Fish and Fur Animals
National Veterinary Institute
Division of Veterinary Diagnostics and Research
Danish Institute for Fisheries and Marine Research
University of Southern Denmark
Aarhus University
Aquasearch farm ApS
Fishlab
Aquatic Diagnostics Ltd.
BioMar A/S
Norwegian School of Veterinary Science
University of Aberdeen
Marine Laboratory
Friedrich Loeffler Institute
Danish Aquaculture Association
Intervet/Schering-Plough Animal Health
Period: 01/01/2009 → 31/12/2013
Number of participants: 31
Acronym: DAFINET
Project ID: 22454
Contact person:
Skjødt, Karsten (Ekstern)
Henryon, Mark (Ekstern)
Nielsen, Torben (Ekstern)
Sørensen, Kirsten E. (Ekstern)
Adams, Alexandra (Ekstern)
Hjermitslev, Niels (Ekstern)
Evensen, Øystein (Ekstern)
Secombes, Chris (Ekstern)
Collett, Bertrand (Ekstern)
Fischer, Uwe (Ekstern)
Henriksen, Niels Henrik (Ekstern)
Nylén, Jørgen (Ekstern)
Project participant:
Pedersen, Karl (Ekstern)
Jørgensen, Thomas R. (Ekstern)
Viuff, Birgitte Martine (Ekstern)
Salomonsen, Jan (Ekstern)
Aasted, Bent (Ekstern)
Mazaheri, Sanaz (Ekstern)
Einer-Jensen, Katja (Intern)
Rasmussen, Jesper Skou (Intern)
Kjær, Torben (Ekstern)
Troels, Lisbeth K. (Ekstern)
Madsen, Lone (Intern)
Nielsen, Michael Engelbrecht (Intern)
Koch, Claus (Ekstern)
Vitved, Lars (Ekstern)
Hvelplund, Jette (Ekstern)
Reily, Samantha (Ekstern)
Project Manager, organisational:
Buchmann, Kurt (Ekstern)
Lorenzen, Niels (Intern)
Dalsgaard, Inger (Intern)

Financing sources
Source: Forskningsprojekter - Andre ministerier og styrelser
Name of research programme: Forskningsprojekter - Andre ministerier og styrelser
Project

Improved vaccination strategies in marine aquaculture
Section of Fish Diseases
Division of Poultry, Fish and Fur Animals
National Veterinary Institute
National Institute of Aquatic Resources
University of Copenhagen
Danish Aquaculture Association
Aller Aqua A/S
Fishlab
AquaSearch Vet

Schering-Plough A/S
Period: 01/04/2008 → 30/09/2012
Number of participants: 15
Project ID: 22452
Project participant:
Rasmussen, Jesper Skou (Intern)
Lorenzen, Ellen (Intern)
Olesen, Niels Jørgen (Intern)
Buchmann, Kurt (Ekstern)
Madsen, Simon B. (Ekstern)
Melingen, Geir Olav (Ekstern)
Project Manager, organisational:
Lorenzen, Niels (Intern)
Dalsgaard, Inger (Intern)
Pedersen, Karl (Ekstern)
Hansen, Per Juel (Ekstern)
Henriksen, Niels Henrik (Ekstern)
Hørlyck, Viggo (Ekstern)
Sørensen, Kirsten Engell (Ekstern)
Nielsen, Torben (Ekstern)
Nylén, Jørgen (Ekstern)

Financing sources
Source: Forskningsprojekter - Andre ministerier og styrelser
Name of research programme: Forskningsprojekter - Andre ministerier og styrelser
Amount: 1,444,780.00 Danish Kroner
Project