Working Memory Modulation of Frontoparietal Network Connectivity in First-Episode Schizophrenia

Working memory (WM) impairment is regarded as a core aspect of schizophrenia. However, the neural mechanisms behind this cognitive deficit remain unclear. The connectivity of a frontoparietal network is known to be important for subserving WM. Using functional magnetic resonance imaging, the current study investigated whether WM-dependent modulation of effective connectivity in this network is affected in a group of first-episode schizophrenia (FES) patients compared with similarly performing healthy participants during a verbal n-back task. Dynamic causal modeling (DCM) of the coupling between regions (left inferior frontal gyrus (IFG), left inferior parietal lobe (IPL), and primary visual area) identified in a psychophysiological interaction (PPI) analysis was performed to characterize effective connectivity during the n-back task. The PPI analysis revealed that the connectivity between the left IFG and left IPL was modulated by WM and that this modulation was reduced in FES patients. The subsequent DCM analysis confirmed this modulation by WM and found evidence that FES patients had reduced forward connectivity from IPL to IFG. These findings provide evidence for impaired WM modulation of frontoparietal effective connectivity in the early phase of schizophrenia, even with intact WM performance, suggesting a failure of context-sensitive coupling in the schizophrenic brain.
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 5.015 SNIP 1.924 CiteScore 7.28
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 5.128 SNIP 1.893 CiteScore 7.2
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 4.981 SNIP 1.834
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 5.005 SNIP 1.884
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 4.886 SNIP 1.767
Scopus rating (2005): SJR 4.377 SNIP 1.759
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 4.039 SNIP 1.683
Scopus rating (2003): SJR 4.773 SNIP 1.887
Scopus rating (2002): SJR 4.17 SNIP 1.655
Scopus rating (2001): SJR 3.962 SNIP 1.851
Scopus rating (2000): SJR 3.643 SNIP 2.053
Scopus rating (1999): SJR 3.858 SNIP 2.201
Original language: English
Dynamic causal modeling, Dysconnection hypothesis, Functional magnetic resonance imaging, n-back
Electronic versions:
bhx050.pdf
DOIs:
10.1093/cercor/bhx050

Bibliographical note
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Source: FindIt
Source-ID: 2355767644
Publication: Research - peer-review › Journal article – Annual report year: 2017

Projects:

Decreasing the spatial uncertainty in non-invasive brain stimulation, EEG and MEG based on advanced head modelling

Department of Applied Mathematics and Computer Science
Period: 15/10/2015 → 14/10/2018
Number of participants: 4
Phd Student:
Nielsen, Jesper Duemose (Intern)
Supervisor:
Madsen, Kristoffer Hougaard (Intern)
Thielscher, Axel (Intern)
Main Supervisor:
Hansen, Lars Kai (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Samfinansieret - Andet
Project: PhD