A Memory-Efficient Parallelizable Method for Computation of Thévenin Equivalents used in Real-Time Stability Assessment

This paper introduces a factor-solve method, which efficiently computes Thévenin equivalents for all buses in the power system. A range of real-time stability assessment methods rely on Thévenin equivalents, and it is therefore essential that these can be determined fast and efficiently. The factor-solve method has runtime for computing Thévenin voltage that scales linearly with system size resulting in runtime of only a few milliseconds even for systems with several thousand buses. The computations only need the sparse admittance matrix for the power system and a sparse factorization resulting in low memory requirements, and furthermore Thévenin impedances can be determined in parallel. The factor-solve method is compared to a reference method, which uses coefficients for super-position to determine the Thévenin equivalents. The reference method is shown to have dissatisfying runtime and complexity. The factorsolve method is tested, parallelized and analysed, which shows a considerable speed-up in computations of Thévenin equivalents enabling them to be computed in real-time.
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.6 SJR 3.315 SNIP 3.386
Web of Science (2015): Impact factor 3.342
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.31 SJR 2.475 SNIP 3.485
Web of Science (2014): Impact factor 2.814
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.33 SJR 2.523 SNIP 4.243
Web of Science (2013): Impact factor 3.53
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.84 SJR 1.941 SNIP 3.387
Web of Science (2012): Impact factor 2.921
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.34 SJR 1.586 SNIP 3.205
Web of Science (2011): Impact factor 2.678
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.708 SNIP 2.759
Web of Science (2010): Impact factor 2.355
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.622 SNIP 2.675
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.309 SNIP 2.45
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.12 SNIP 2.48
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.147 SNIP 2.259
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.41 SNIP 2.482
Scopus rating (2004): SJR 0.938 SNIP 2.807
Scopus rating (2003): SJR 2.078 SNIP 2.607
Scopus rating (2002): SJR 1.404 SNIP 2.284
Scopus rating (2001): SJR 1.553 SNIP 1.847
Scopus rating (2000): SJR 0.515 SNIP 3.179
Scopus rating (1999): SJR 0.475 SNIP 1.644

Original language: English
Keywords: Algorithms, Power system analysis computing, Real-time assessment, Thevenin equivalent
Electronic versions:
FINAL_VERSION_4_.pdf
DOI:
10.1109/TPWRS.2019.2900560
Source: PublicationPreSubmission
Source-ID: 169252908
Research output: Research - peer-review › Journal article – Annual report year: 2019
Evaluation of Factorization Methods for Thévenin Equivalent Computations in Real-Time Stability Assessment

Thevenin equivalents are used by a range of power system stability indicators, such as the L-index for voltage stability and the aperiodic small signal rotor angle stability indicator. This paper investigates the effect of using different factorization methods for computing coefficients for wide-area Thevenin equivalents. Direct and incomplete factorization methods are compared with respect to runtime, accuracy and amount of fill-in. The paper introduces a proof that the block triangular form of bus admittance matrices will have no non-zero entries in the off-diagonal. KLU factorization is found to perform almost twice as fast as the standard LU factorization with no cost of accuracy. It is, however, shown that the largest computational workload is associated with dense matrix multiplications. An incomplete method reduces the fill-in of coefficient matrices at the cost of accuracy in Thevenin voltages. It is shown, that inaccuracies are amplified as the L-index approaches the stability limit.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Electric Power Systems, Electric Equipment Technologies
Contributors: Hildebrandt, C., Karatas, B. C., Glarbo Muller, J., Johannsson, H.
Number of pages: 7
Pages: 7 pp.
Publication date: 2018

Host publication information
Title of host publication: Proceedings of 2018 Power Systems Computation Conference
Publisher: IEEE
ISBN (Print): 9781910963104
Keywords: Power system analysis computing, Real-time assessment, Thevenin equivalent, Wide-area monitoring, Power system stability indicators
Electronic versions:
PID5218609_1_.pdf
DOIs:
10.23919/PSCC.2018.8442893
Source: Findit
Source-ID: 2438953754
Research output: Research - peer-review » Article in proceedings – Annual report year: 2018

Historical Data Analysis for Extending Dynamic Line Ratings Across Power Transmission Systems

Dynamic Line Rating (DLR) consists in an innovative way to operate power systems, which allows for higher power flows on transmission lines depending on weather conditions. Extending the application of DLR technology from one to numerous lines across a larger transmission power system presents challenges with respect to the scalability due to the large amount of data required. Firstly, a modified overhead line thermal model and the use of historical weather data are considered in this paper to preliminary assess the margin for increased rating of transmission lines. Secondly, spatial correlation of line ratings are analyzed and a comparison of various rating approaches, which rely on different combinations of weather variables, is presented. The resulting probability distributions of line ratings are compared with constant seasonal ratings highlighting the trade-off between those solutions that yield a large increase in rating at a cost of high volatility, against simpler approaches which are more conservative and require less information. The results reported are based on actual data of the western section of the Danish power transmission system.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Electric Equipment Technologies, Energinet.dk
Number of pages: 6
Pages: 1-6
Publication date: 2018

Host publication information
Title of host publication: 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)
Publisher: IEEE
ISBN (Electronic): 978-1-5386-3596-4
Keywords: Dynamic line rating, Historical weather data, Correlation, Overhead lines, Thermal model
DOIs:
10.1109/PMAPS.2018.8440449
Super-Positioning of Voltage Sources for Fast Assessment of Wide-Area Thévenin Equivalents
A method for superimposing voltage sources is sought optimized by using a sparse triangular solver and multiprocessing. A revision to the method is suggested which exploits Schur’s complement of the network admittance matrix and optimal re-use of computations. The algorithm is implemented and parallelized for shared memory multiprocessing. The proposed algorithm is tested on a collection of large test systems and performance is found to be significantly better than the reference method. The algorithm will thereby facilitate a speed-up of methods relying on Thévenin equivalent representation such as the Thévenin equivalent method for contingency assessment.

General information
State: Published
Organisations: Electric Equipment Technologies, Electric Power Systems, Center for Electric Power and Energy, Department of Electrical Engineering
Contributors: Møller, J. G., Jóhannsson, H., Østergaard, J.
Publication date: 2018

Host publication information
Title of host publication: Proceedings of the 2018 IEEE PES General Meeting
Publisher: IEEE
ISBN (Print): 9781538677032
Electronic versions: PESGM2018_000474.pdf
DOIs: 10.1109/PESGM.2018.8585962
Source: PublicationPreSubmission
Source-ID: 159432360
Research output: Research - peer-review » Article in proceedings – Annual report year: 2018

Detecting Topological Errors with Pre-Estimation Filtering of Bad Data in Wide-Area Measurements
It is expected that bad data and missing topology information will become an issue of growing concern when power system state estimators are to exploit the high measurement reporting rates from phasor measurement units. This paper suggests to design state estimators with enhanced resilience against those issues. The work presented here include a review of a pre-estimation filter for bad data. A method for detecting branch status errors which may also be applied before the state estimation is then proposed. Both methods are evaluated through simulation on a novel test platform for wide-area measurement applications. It is found that topology errors may be detected even under influence of the large dynamics following the loss of a heavily loaded branch.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Electric Equipment Technologies, Electric Power Systems, Technical University of Denmark
Contributors: Møller, J. G., Sørensen, M., Jóhannsson, H., Østergaard, J.
Number of pages: 6
Publication date: 2017

Host publication information
Title of host publication: Proceedings of 12th IEEE Power and Energy Society PowerTech Conference
Publisher: IEEE
Keywords: Power system State Estimation, Topology Error, Bad Data, PMU, WAMS
DOIs: 10.1109/PTC.2017.7980940
Research output: Research - peer-review » Article in proceedings – Annual report year: 2018

Super-Positioning of Voltage Sources for Fast Assessment of Wide-Area Thévenin Equivalents
A method for superimposing voltage sources is sought optimized by using a sparse triangular solver and multiprocessing. A revision to the method is suggested which exploits Schur’s complement of the network admittance matrix and optimal re-use of computations. The algorithm is implemented and parallelized for shared memory multiprocessing. The proposed algorithm is tested on a collection of large test systems and performance is found to be significantly better than the reference method. The algorithm will
thereby facilitate a speed-up of methods relying on Thévenin equivalent representation such as the Thévenin equivalent method for contingency assessment.

General information

State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Electric Equipment Technologies, Electric Power Systems
Contributors: Møller, J. G., Jóhannsson, H., Østergaard, J.
Pages: 1488-1493
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: I E E E Transactions on Smart Grid
Volume: 8
Issue number: 3
ISSN (Print): 1949-3053
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 9.02 SJR 2.854 SNIP 2.995
Web of Science (2017): Impact factor 7.364
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 7.92 SJR 2.73 SNIP 2.837
Web of Science (2016): Impact factor 6.645
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 8.48 SJR 3.424 SNIP 3.284
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 7.77 SJR 2.582 SNIP 3.687
Web of Science (2014): Impact factor 4.252
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 9.88 SJR 2.581 SNIP 4.642
Web of Science (2013): Impact factor 4.334
ISI indexed (2013): ISI indexed no
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 13.33 SJR 1.797 SNIP 6.273
ISI indexed (2012): ISI indexed no
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 11.78 SJR 0.778 SNIP 5.653
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
Original language: English
Keywords: Algorithms, Power system analysis computing, Thévenin equivalent
Electronic versions:
DOIs:
10.1109/TSG.2016.2639559

Bibliographical note

(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for
On-Line Generation and Arming of System Protection Schemes

This paper presents a new method to automatically generate system protection schemes in real-time, where contingencies are filtered using a method providing N–1 system snapshots. With future power systems consisting largely of renewable distributed generation with time-varying production, highly fluctuating conditions throughout the day will be the result. This makes off-line design of extensive defense plans for power systems infeasible, forming the motivation for the presented method. It relies on the real-time identification of which disturbances that threatens a power systems integrity. The method is based on a recently proposed method of calculating post-contingency Thévenin equivalents, which are used to assess the security of the post-contingency condition. The contingencies that violate the emergency limits are contained by pre-determining event-based remedial actions. The instability mechanisms threatening the system are individually treated, such that appropriate controls are allocated. The procedure is illustrated through a case study using the Nordic32 benchmark system.

General information
State: Published
Organisations: Department of Electrical Engineering, Automation and Control, Center for Electric Power and Energy, Electric Power Systems
Contributors: Pedersen, A. S., Blanke, M., Møller, J. G., Jóhannsson, H.
Pages: 277-281
Publication date: 2016

Host publication information
Title of host publication: Proceedings of the 10th Electric Power Quality and Supply Reliability Conference
Publisher: IEEE
ISBN (Print): 978-1-5090-1564-1
Keywords: Power System Security, Power System Stability, Special Protection Schemes
DOI: 10.1109/PQ.2016.7724127
Source: PublicationPreSubmission
Source-ID: 125715200
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016

Thévenin equivalent based static contingency assessment

The present invention relates to a method for static security assessment of a power system and a real time static security assessment system for assessing a power system, the power system having a plurality of generators, the plurality of generators being represented in the network by a plurality of voltage controlled nodes, wherein the method for static security assessment of the power system comprises receiving information of a present state of the power system, determining a Thévenin equivalent for each voltage controlled node, determining for each voltage controlled node on basis of the determined present state of the power system and determining a first representation of the network based on the determined Thévenin equivalents, determining a modified representation of the network, wherein the modified representation is a representation of the network having at least one contingency, wherein at least one Thévenin equivalent of at least one voltage controlled node is modified due to the at least one contingency, the modified network representation being determined on the basis of the modified Thévenin equivalents, calculating voltage angles of the modified Thévenin equivalents, and evaluating the voltage angles to determine whether the network having at least one contingency admit a steady state. Also a method of providing information on a real time static security assessment of a power system is disclosed.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Electric Power Systems
Contributors: Jóhannsson, H., Møller, J. G.
Publication date: 8 Oct 2015

Publication information
IPC: H02J 3/04 A
Patent number: WO2015150577
Date: 08/10/2015
Priority date: 04/04/2014
Priority number: EP20140163623
Original language: English
Thevenin Equivalent Method for Dynamic Contingency Assessment

A method that exploits Thevenin equivalent representation for obtaining post-contingency steady-state nodal voltages is integrated with a method of detecting post-contingency aperiodic small-signal instability. The task of integrating stability assessment with contingency assessment is challenged by the cases of unstable post-contingency conditions. For unstable postcontingency conditions there exists no credible steady-state which can be used for basis of a stability assessment. This paper demonstrates how Thevenin Equivalent methods can be applied in algebraic representation of such bifurcation points which may be used in assessment of post-contingency aperiodic small-signal stability. The assessment method is introduced with a numeric example.

Computation of Steady State Nodal Voltages for Fast Security Assessment in Power Systems

Development of a method for real-time assessment of post-contingency nodal voltages is introduced. Linear network theory is applied in an algorithm that utilizes Thevenin equivalent representation of power systems as seen from every voltage-controlled node in a network. The method is evaluated by comparing with results from time domain simulations and power flow calculations using Newton-Raphson’s method. It is concluded that the developed method performs better than Newton-Raphson’s method in reproducing results from time domain simulations. Discussion includes considerations for further development for facilitating treatment of composite loads.

Uncertainty in real-time voltage stability assessment methods based on Thevenin equivalent due to PMU’s accuracy

This article studies the influence of PMU’s accuracy in voltage stability assessment, considering the specific case of Thevenin equivalent based methods that include wide-area information in its calculations. The objective was achieved by...
producing a set of synthesized PMU measurements from a time domain simulation and using the Monte Carlo method to reflect the accuracy for the PMUs. This is given by the maximum value for the Total Vector Error defined in the IEEE standard C37.118. Those measurements allowed to estimate the distribution parameters (mean and standard deviation) of the studied voltage stability indices and grid transformation coefficients which have applications in voltage stability assessment. The obtained distributions have a direct impact in the number of samples needed for estimating system parameters and compromise between time-scale and uncertainty in those estimations is shown.

Policies and Initiatives for Carbon Neutrality in Nordic
Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the promotion of HPs (heat pumps) while the focus within transport systems is initiatives regarding EVs (electric vehicles). It is found that the conversion to HPs in the Nordic region relies on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans for the future heating and transport systems with the ambition of realizing carbon neutrality.
Projects:

Static Security Assessment and PMU Data Validation
Møller, J. G., PhD Student, Department of Electrical Engineering
Østergaard, J., Main Supervisor, Department of Electrical Engineering
Jóhannsson, H., Supervisor, Department of Electrical Engineering
Pinson, P., Examiner, Department of Electrical Engineering
Hug-Glanzman, G., Examiner
Huang, Z. H., Examiner
Samfinansierede - Virksomhed
01/08/2013 → 12/04/2017
Award relations: Static Security Assessment and PMU Data Validation
Project: PhD

SOSPO: Secure Operation of Sustainable Power Systems
Funded by the Danish Council for strategic research (DSF) The project period spans four years, starting in January 2012. The total budget for the project is approximately 30.2 million DKK, which covers among others the funding of 5 PhD and 3 PostDoc positions. The project is managed by prof. Jacob Østergaard, head of Centre for Electric Technology. The SOSPO project focuses on a critical, difficult and not yet treated problem regarding how secure operation of future sustainable power systems (based on wind and solar energy) can be ensured. The research in the SOSPO project focuses on methods that enable system stability and security assessment in real-time and on methods for automatically determining control actions that regain system security when an insecure operation has been detected. Østergaard, J., Project Manager, Department of Electrical Engineering, Electric Energy Systems
Jóhannsson, H., Project Manager, Department of Electrical Engineering, Electric Energy Systems
Nielsen, A. H., Project Participant, Department of Electrical Engineering, Electric Energy Systems
Garcia-Valle, R., Project Participant, Department of Electrical Engineering, Electric Energy Systems
Yang, G., Project Participant, Department of Electrical Engineering, Electric Energy Systems
Lind, M., Project Participant, Automation and Control, Department of Electrical Engineering
Blanke, M., Project Participant, Automation and Control, Department of Electrical Engineering
Weckesser, J. T. G., PhD Student, Department of Electrical Engineering, Electric Energy Systems
Wittrock, M. L., PhD Student, Department of Electrical Engineering, Center for Electric Power and Energy, Electric Power Systems
Møller, J. G., PhD Student, Department of Electrical Engineering, Center for Electric Power and Energy, Electric Power Systems
Perez, A., PhD Student, Department of Electrical Engineering, Center for Electric Power and Energy, Electric Power Systems
Pedersen, A. S., PhD Student, Department of Electrical Engineering, Automation and Control
Zhang, X., Project Participant, Department of Electrical Engineering, Automation and Control
01/01/2012 → 31/03/2016
Keywords: Stability sustainable power system
Collaborators: Energinet.dk, Siemens, Swiss Federal Institute of Technology Zurich, Lund University, Ken M Consulting, Chalmers University of Technology
Documents:
SOSPO Public Fact Sheet 2013
Project: Research