Characteristics of Xanthosoma sagittifolium roots during cooking, using physicochemical analysis, uniaxial compression, multispectral imaging and low field NMR spectroscopy

To effectively promote the industrial utilization of cocoyam (Xanthosoma sagittifolium) roots for enhanced food sustainability and security, there is a need to study their molecular, mechanical and physicochemical properties in detail. The physicochemical and textural characteristics of the red and white varieties of cocoyam roots were thus analysed by low field nuclear magnetic resonance relaxometry, multispectral imaging, uniaxial compression testing, and relevant physicochemical analysis in the current study. Both varieties had similar dry matter content, as well as physical and mechanical properties. However, up to four fast-interacting water populations were observed in the roots, dependent on the root variety and their degree of gelatinization during cooking. Changes in the relaxation parameters indicated weak gelatinization of starch at approximately 80 °C in both varieties. However, shorter relaxation times and a higher proportion of restricted water in the white variety indicated that this variety was slightly more sensitive towards gelatinization. A strong negative correlation existed between dry matter and all multispectral wavelengths >800 nm, suggesting the potential use of that spectral region for rapid analysis of dry matter and water content of the roots. The small, but significant differences in the structural and gelatinization characteristics of the two varieties indicated that they may not be equally suited for further processing, e.g. to flours or starches. Processors thus need to choose their raw materials wisely dependent on the aimed product characteristics. However, the spectroscopic methods applied in the study were shown to be effective in assessing important quality attributes during cooking of the roots.
Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically with CaCO3 using a double enzymatic approach. The enzymes urease (U) and carbonic anhydrase (CA) were incorporated in GG hydrogels. Hydrogels were incubated in a mineralization solution containing U substrate (urea) and calcium ions. U converts urea to ammonia (which raises pH) and CO2. CA catalyses the reaction of CO2 with water to form HCO3 −, which undergoes deprotonation to form CO3 2−, which react with Ca2+ to form insoluble CaCO3. All hydrogels containing U+CA were mineralized more with calcite and stiffer than hydrogels containing U. Mineralization with calcite promoted proliferation and spreading of osteoblast-like cells.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Université de Lille, AGH University of Science and Technology, Ghent University
Authors: Lopez-Heredia, M. A. (Ekstern), Łapa, A. (Ekstern), Mendes, A. C. L. (Intern), Balcaen, L. (Ekstern), Samal, S. K. (Ekstern), Chai, F. (Ekstern), Van der Voort, P. (Ekstern), Stevens, C. V. (Ekstern), Parakhonskiy, B. V. (Ekstern), Chronakis, I. S. (Intern), Vanhaecke, F. (Ekstern), Blanchemain, N. (Ekstern), Pamula, E. (Ekstern), Skirtach, A. G. (Ekstern), Douglas, T. E. L. (Ekstern)
Number of pages: 4
Pages: 13-16
Publication date: 2017
Main Research Area: Technical/natural sciences

Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically with CaCO3 using a double enzymatic approach. The enzymes urease (U) and carbonic anhydrase (CA) were incorporated in GG hydrogels. Hydrogels were incubated in a mineralization solution containing U substrate (urea) and calcium ions. U converts urea to ammonia (which raises pH) and CO2. CA catalyses the reaction of CO2 with water to form HCO3 −, which undergoes deprotonation to form CO3 2−, which react with Ca2+ to form insoluble CaCO3. All hydrogels containing U+CA were mineralized more with calcite and stiffer than hydrogels containing U. Mineralization with calcite promoted proliferation and spreading of osteoblast-like cells.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Université de Lille, AGH University of Science and Technology, Ghent University
Authors: Lopez-Heredia, M. A. (Ekstern), Łapa, A. (Ekstern), Mendes, A. C. L. (Intern), Balcaen, L. (Ekstern), Samal, S. K. (Ekstern), Chai, F. (Ekstern), Van der Voort, P. (Ekstern), Stevens, C. V. (Ekstern), Parakhonskiy, B. V. (Ekstern), Chronakis, I. S. (Intern), Vanhaecke, F. (Ekstern), Blanchemain, N. (Ekstern), Pamula, E. (Ekstern), Skirtach, A. G. (Ekstern), Douglas, T. E. L. (Ekstern)
Number of pages: 4
Pages: 13-16
Publication date: 2017
Main Research Area: Technical/natural sciences

Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically with CaCO3 using a double enzymatic approach. The enzymes urease (U) and carbonic anhydrase (CA) were incorporated in GG hydrogels. Hydrogels were incubated in a mineralization solution containing U substrate (urea) and calcium ions. U converts urea to ammonia (which raises pH) and CO2. CA catalyses the reaction of CO2 with water to form HCO3 −, which undergoes deprotonation to form CO3 2−, which react with Ca2+ to form insoluble CaCO3. All hydrogels containing U+CA were mineralized more with calcite and stiffer than hydrogels containing U. Mineralization with calcite promoted proliferation and spreading of osteoblast-like cells.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Université de Lille, AGH University of Science and Technology, Ghent University
Authors: Lopez-Heredia, M. A. (Ekstern), Łapa, A. (Ekstern), Mendes, A. C. L. (Intern), Balcaen, L. (Ekstern), Samal, S. K. (Ekstern), Chai, F. (Ekstern), Van der Voort, P. (Ekstern), Stevens, C. V. (Ekstern), Parakhonskiy, B. V. (Ekstern), Chronakis, I. S. (Intern), Vanhaecke, F. (Ekstern), Blanchemain, N. (Ekstern), Pamula, E. (Ekstern), Skirtach, A. G. (Ekstern), Douglas, T. E. L. (Ekstern)
Number of pages: 4
Pages: 13-16
Publication date: 2017
Main Research Area: Technical/natural sciences

Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically with CaCO3 using a double enzymatic approach. The enzymes urease (U) and carbonic anhydrase (CA) were incorporated in GG hydrogels. Hydrogels were incubated in a mineralization solution containing U substrate (urea) and calcium ions. U converts urea to ammonia (which raises pH) and CO2. CA catalyses the reaction of CO2 with water to form HCO3 −, which undergoes deprotonation to form CO3 2−, which react with Ca2+ to form insoluble CaCO3. All hydrogels containing U+CA were mineralized more with calcite and stiffer than hydrogels containing U. Mineralization with calcite promoted proliferation and spreading of osteoblast-like cells.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Université de Lille, AGH University of Science and Technology, Ghent University
Authors: Lopez-Heredia, M. A. (Ekstern), Łapa, A. (Ekstern), Mendes, A. C. L. (Intern), Balcaen, L. (Ekstern), Samal, S. K. (Ekstern), Chai, F. (Ekstern), Van der Voort, P. (Ekstern), Stevens, C. V. (Ekstern), Parakhonskiy, B. V. (Ekstern), Chronakis, I. S. (Intern), Vanhaecke, F. (Ekstern), Blanchemain, N. (Ekstern), Pamula, E. (Ekstern), Skirtach, A. G. (Ekstern), Douglas, T. E. L. (Ekstern)
Number of pages: 4
Pages: 13-16
Publication date: 2017
Main Research Area: Technical/natural sciences

Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically with CaCO3 using a double enzymatic approach. The enzymes urease (U) and carbonic anhydrase (CA) were incorporated in GG hydrogels. Hydrogels were incubated in a mineralization solution containing U substrate (urea) and calcium ions. U converts urea to ammonia (which raises pH) and CO2. CA catalyses the reaction of CO2 with water to form HCO3 −, which undergoes deprotonation to form CO3 2−, which react with Ca2+ to form insoluble CaCO3. All hydrogels containing U+CA were mineralized more with calcite and stiffer than hydrogels containing U. Mineralization with calcite promoted proliferation and spreading of osteoblast-like cells.
Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing

The encapsulation of fish oil in carbohydrate-based nanomicrostructures obtained by electrohydrodynamic processing was investigated. Solutions of pullulan 200 kDa (15 wt%) and dextran 70 kDa (25 wt%) presented appropriate properties (viscosity, surface tension and conductivity) to allow the formation of nano-microfibers and nano-microcapsules, respectively. Although dextran 70 kDa exhibited antioxidant properties in solution, their capsules produced at lab and pilot-
plant scales showed a low oxidative stability both with emulsified and neat oil. Phase separation of solution and opened capsules indicated a poor interaction between dextran and fish oil, which suggested that further optimization of the electrospraying solution is necessary. On the contrary, pullulan solutions were optimized to work even at pilot-plant scale. In this case, in spite of the prooxidant effect of pullulan in solution, oxidatively stable pullulan fibers ($PV = 12.3 \pm 0.9$ meq O$_2$/kg and 15.5 ± 5.1 ng/g of 1-penten-3-ol) were obtained when oil was incorporated as neat oil and when producing batches during short time (30 or 10 min). This superior oxidative stability when compared to fibers with emulsified oil is mainly attributed to a higher fish oil entrapment and to the location of the oil in large bead-structures with a reduced specific surface area. These results indicated the feasibility of producing omega-3 nanodelivery systems by encapsulating fish oil in pullulan nano-microfibers using electrospinning processing.
Electrospinning of food proteins and polysaccharides

Nano-microfibrous structures of biopolymers with a wide range of compositions, morphologies, mechanical properties and bioactivities could be developed using electrospinning technology. This review focuses on the processing, properties, functionalization and potential applications of electrospun biopolymers. Biopolymers include proteins (gelatin, collagen, elastin, silk, soy zein, gliadin, hordein, amaranth, casein, wheat, whey, marine sources proteins), and polysaccharides (chitosan, starch, alginate, cellulose and cellulose derivatives, pullulan, dextran, cyclodextrins).
Electrospinning of Xanthan Polysaccharide

Electrospun pure xanthan polysaccharide nanofibers are prepared using formic acid as a solvent. Morphological studies by scanning electron microscopy show that uniform fibers with average diameters ranging from 128 ± 36.7 to 240 ± 80.7 nm are formed depending on the polysaccharide concentration (0.5 to 2.5 wt/vol%). The correlation between the concentration and the rheological properties of xanthan solutions, with the morphology of the nanofibers is investigated. At the polysaccharide concentrations where nanofiber formation is observed, an increase of the elastic modulus and first normal stress differences is observed. The typical “weak gel-like” and thixotropic properties known for aqueous xanthan solutions, are not observed for the xanthan solutions in formic acid. The Fourier transform infrared spectroscopic and circular dichroism studies verify that an esterification reaction takes place, where formic acid reacts with the pyruvic acid groups of xanthan. Hence, formate groups neutralize the pyruvic charges which in turn stabilize the helical conformation of xanthan. The results obtained from size-exclusion chromatography reveal a small difference in the molecular weight of the polysaccharide when dissolved in distilled water or in formic acid.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Center for Nanostructured Graphene, Department of Micro- and Nanotechnology, Self-Organized Nanoporous Materials
Authors: Shekarforoush, E. (Intern), Faralli, A. (Intern), Ndoni, S. (Intern), Mendes, A. C. L. (Intern), Chronakis, I. S. (Intern)
Number of pages: 11
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Macromolecular Materials & Engineering
Volume: 302
Issue number: 8
ISSN (Print): 1438-7492
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
Electrospun Polymer Fiber Lasers for Applications in Vapor Sensing

A sensing approach based on laser emission from polymer fiber networks is presented. Poly(methyl methacrylate) (PMMA) fibers doped with a laser dye are fabricated by electrospinning. They form random loop resonators, which show laser emission upon optical pumping. The shift of the spectral position of the narrow lasing modes upon uptake of alcohol vapors (model vapors are methanol and ethanol) serves as sensor signal. Thus, the high sensitivity related to the spectral line shifts of cavity-based transducers can be combined with the fiber's large surface to volume ratio. The resulting optical sensors feature excellent sensing performance due to the large overlap (more than 80%) of light field and transducer. The shift of the laser modes results from the swelling of the polymer when exposed to solvent vapors. Due to distinctly different diffusion coefficients in polymers, the uptake dynamics reflected in the transient shift of the lasing peaks can be used to discriminate ethanol and methanol vapor in mixtures of them. The sensing mechanism is expected to be applicable to other solvent vapors that cause polymer swelling.
Electrostatic Self-Assembly of Polysaccharides into Nanofibers

In this study, the anionic polysaccharide Xanthan gum (X) was mixed with positively charged Chitosan oligomers (ChO), and used as building blocks, to generate novel nanofibers by electrostatic self-assembly in aqueous conditions. Different concentrations, ionic strength and order of mixing of both components were tested and observed to affect the diameter, which ranged from 100 to 500 nm, and morphology of the self-assembled nanofibers. The release of diclofenac, as model drug, from self-assembled xanthan-chitosan nanofibers was demonstrated, suggesting that these nanostructures can be used in applications within life sciences such as drug delivery.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Westfälische Wilhelms-Universität Münster
Authors: Mendes, A. C. L. (Intern), Strohmenger, T. (Ekstern), Goycoolea, F. (Ekstern), Chronakis, I. S. (Intern)
Number of pages: 7
Pages: 182-188
Publication date: 2017
Main Research Area: Technical/natural sciences
Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications

Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO$_3$) has been successfully applied as a bone regeneration material, but hydrogel-CaCO$_3$ composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO$_3$, Mg-enriched CaCO$_3$ and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg$_5$ (CO$_3$)$_4$ (OH)$_2$.4H$_2$O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO$_3$ in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd.
Innovative Methods and Applications in Mucoadhesion Research

The present review is aimed at elucidating relatively new aspects of mucoadhesion/mucus interaction and related phenomena that emerged from a Mucoadhesion workshop held in Munster on 2–3 September 2015 as a satellite event of the ICCC 13th—EUCHIS 12th. After a brief outline of the new issues, the focus is on mucus description, purification, and mucus/mucin characterization, all steps that are pivotal to the understanding of mucus related phenomena and the choice of the correct mucosal model for in vitro and ex vivo experiments, alternative bio/mucomimetic materials are also presented. Then a selection of preparative techniques and testing methods are described (at molecular as well as micro and macroscale) that may support the pharmaceutical development of mucus interactive systems and assist formulators in the scale-up and industrialization steps. Recent applications of mucoadhesive systems (including medical devices) intended for different routes of administration (oral, gastrointestinal, vaginal, nasal, ocular, and intravesical) and for the treatment of difficult to treat pathologies or the alleviation of symptoms are described.

General information
State: Published
Organisations: Department of Mechanical Engineering, Materials and Surface Engineering, Research Group for Nano-Bio Science, National Food Institute, University of Leeds, University of Erlangen-Nuremberg, University of Pavia, University of Oslo, S.I.I.T. S.r.l Pharmaceutical & Health Food Supplements, University of Copenhagen
Authors: Mackie, A. (Ekstern), Goycoolea, F. M. (Ekstern), Menchicchi, B. (Ekstern), Caramella, C. M. (Ekstern), Saporito, F. (Ekstern), Lee, S. (Intern), Boutrup Stephansen, K. (Intern), Chronakis, I. S. (Intern), Hiorth, M. (Ekstern), Adamczak, M.
Interfacial Shear Rheology of β-Lactoglobulin - Bovine Submaxillary Mucin Layers Adsorbed at Air/Water Interface

The interfacial rheological properties of solutions of β-lactoglobulin (BLG), as a model food compound, mixed with bovine submaxillary mucin (BSM), a major salivary protein, have been investigated. Time, frequency, stress sweep and flow measurements have been performed at different pHs (7.4, 5.0 and 3.0), to investigate the air/water interfacial properties. All protein layers (BLG, BSM, and BLG-BSM mixtures) formed an elastic network at the air/water interface with low frequency dependence of the interfacial modulus. The results indicated that BLG moves faster as smaller molecule than mucin, and dominate the surface adsorption and the network formation for the BLG-BSM mixtures. Moreover, BLG-BSM protein mixtures exhibited interfacial properties with lower elastic and viscous moduli than BLG, as a result of competitive
displacement of BLG proteins with BSMs from the interface. It is suggested that hydrophobic patches of BSM can be imbedded into the BLG monolayer as driven by a strong hydrophobic interaction with air and disrupt the cohesive assembly of BLG, whereas the hydrophilic (negatively charged) parts of the BSM chain are protruding from the interface towards the bulk water.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Department of Mechanical Engineering, Materials and Surface Engineering, Technical University of Denmark
Authors: Celebioglu, H. Y. (Intern), Kmiecik-Palczewska, J. (Forskerdatabase), Lee, S. (Intern), Chronakis, I. S. (Intern)
Number of pages: 11
Pages: 857-867
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: International Journal of Biological Macromolecules
Volume: 102
ISSN (Print): 0141-8130
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.84 SJR 0.872 SNIP 1.288
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.815 SNIP 1.316 CiteScore 3.38
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.861 SNIP 1.325 CiteScore 3.13
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.849 SNIP 1.452 CiteScore 3.48
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.796 SNIP 1.313 CiteScore 2.77
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.689 SNIP 1.21 CiteScore 2.73
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.865 SNIP 1.211
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.799 SNIP 1.189
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.749 SNIP 0.98
Scopus rating (2007): SJR 0.627 SNIP 1.001
Scopus rating (2006): SJR 0.51 SNIP 0.806
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.564 SNIP 1.179
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.587 SNIP 0.929
Scopus rating (2003): SJR 0.527 SNIP 0.993
Web of Science (2003): Indexed yes
Nowadays, there is an aggressive rate in consumption of noodles and pasta products throughout the world. Consumer acceptability and preference of these functional products can be promoted by the discovery of novel knowledge to improve their formulation and quality. The development of fortified-formulations for noodles and pasta products based on microbial transglutaminase (MTGase) can guarantee the shelf life extension with minimum quality losses. The current review focuses on recent trends and future prospects of MTGase utilization in the structural matrix of noodles and pasta products and represents the quality changes of cooking loss, texture, microstructure, color and sensory attributes of the MTGase-incorporated products. Digestibility, nutritional and health aspects of the MTGase-enriched formulations are also reviewed with a vision toward physical functions and safety outcomes of MTGases isolated from new microbial sources. The high potential of MTGase in developing commercial noodles and pasta products is successfully demonstrated. MTGase by modifying the crystallinity or molecular structure via covalent crosslinks between protein molecules strengthens the doughs stability and the textural characteristics of final products with the low- or high-protein flour. Compared with the control samples, the MTGase-supplemented products indicate slower digestion rates and better sensory and cooking properties without any remarkable color instability.
Oxidative stability of pullulan electrospun fibers containing fish oil: Effect of oil content and natural antioxidants addition

The effect of oil content and addition of natural antioxidants on the morphology and oxidative stability of pullulan ultra-thin fibers loaded with fish oil and obtained by electrospinning was investigated. Pullulan sub-micron fibers containing 10 and 30 wt% fish oil were prepared and both presented beads where the oil accumulated. The number of beads was significantly higher in 30 wt% oil-loaded fibers. Moreover, fibers containing 30 wt% fish oil had a higher oxidative stability when compared to 10 wt% oil-loaded fibers, despite its lower encapsulation efficiency (EE) value (67.1±3.1%). The oxidative stability of fibers loaded with 10 wt% fish oil (EE=88.5±0.7%) was significantly improved when adding δ-tocopherol (500 ppm) and rosemary extract (500 ppm) as antioxidants. However, higher concentration of antioxidants (2000 ppm δ-tocopherol and 1000 ppm rosemary extract) did not further improve the oxidative stability of 10 wt% oil-loaded fibers, but had a pro-oxidant effect. Finally, the production of pullulan fibers containing 10 wt% fish oil from formic acid solutions increased the oxidative stability of the fibers when compared to the same type of fibers obtained from water solutions. The latter was observed for fibers without and with antioxidants (500 ppm of δ-tocopherol and 500 ppm of rosemary extract). Practical applications: Encapsulation of omega-3 polynsaturated fatty acids and addition of natural antioxidants are the most efficient strategies to protect these lipids against oxidation when incorporating them into food matrices. These results show the feasibility to encapsulate fish oil in pullulan ultra-thin fibers and to improve their oxidative stability by adding natural antioxidants such as δ-tocopherol and rosemary extract. Therefore, this study might open up new opportunities for further technological development in the production of omega-3 nanodelivery systems, which have potential applications in different types of fortified foods. Encapsulation of fish oil in electrospun pullulan fibers stabilized by natural antioxidants.

General information
State: Accepted/In press
Organisations: National Food Institute, Research Group for Bioactives – Analysis and Application, Research Group for Nano-Bio Science, Technical University of Denmark
Authors: García Moreno, P. J. (Intern), Damberg, C. (Ekstern), Chronakis, I. S. (Intern), Jacobsen, C. (Intern)
Number of pages: 11
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: European Journal of Lipid Science and Technology
ISSN (Print): 1438-7697
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Trefoil factor peptide 3 is positively correlated with the viscoelastic properties of the cervical mucus plug

The viscoelastic properties of the cervical mucus plug are considered essential for the occlusion of the cervical canal and thereby for protection against ascending infections during pregnancy. Factors controlling this property are virtually unknown. This study explores a possible role of trefoil factor peptides 1, 2 and 3 (TFF1-3); peptides believed to influence mucus viscosity.

MATERIALS AND METHODS: The study is based on spontaneously shed cervical mucus plugs from 14 women in active labor. The viscoelastic properties; the elastic modulus (G') and the viscous modulus (G'') were determined by an oscillatory rheometer. The concentrations of TFF1-3 were measured by an in-house ELISA. Associations were analyzed by random-effects generalized least squares regression analyses.

RESULTS: Median (range) concentrations of TFF1, (TFF2) and [TFF3] were 3.1 (1.2-8.6), (1.1 (<0.006-3.7)) and [1000 (170-5300)] nmol/g cervical mucus plug. The TFF3 concentration was associated with G' (regression coefficient 11.7 Pa/Log nM (95% CI; 3.0 - 20.4, p = 0.009) and G'' (regression coefficient 3.2 Pa / Log nM (95% CI; 1.5 - 5.0, p < 0.001). Conclusion We suggest that TFF3 plays a role in the viscoelastic properties of the cervical mucus plug.
A full-layer bladder wall patch by mincing both porcine bladder mucosa and detrusor in a natural-synthetic scaffold

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Karolinska Institutet, Uppsala University
Authors: Ajalloueian, F. (Intern), Chamorro, C. I. (Ekstern), Chronakis, I. S. (Intern), Hilborn, J. (Ekstern), Fossum, M. (Ekstern)
Pages: 84-84
Publication date: 2016
Conference: European Chapter Meeting of the Tissue Engineering and Regenerative Medicine International Society 2016 (TERMIS-EU), Uppsala, Sweden, 26/06/2016 - 26/06/2016
Main Research Area: Technical/natural sciences

Publication information
Journal: European Cells & Materials
Volume: 31
Issue number: 1
ISSN (Print): 1473-2262
Ratings:
BFI (2018): BFI-level 1
Chitosan/Phospholipids Hybrid Nanofibers and Hydrogels for Life Sciences Applications

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science
Authors: Mendes, A. C. L. (Intern), Shekarforoush, E. (Intern), Sevilla Moreno, J. A. (Intern), Chronakis, I. S. (Intern)
Number of pages: 1
Publication date: 2016
Main Research Area: Technical/natural sciences
Links:
http://www.sustain.dtu.dk/

Bibliographical note
Sustain Abstract H-8
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2016
Co-assembly of chitosan and phospholipids into hybrid hydrogels

Novel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties. A lower concentration of phospholipids (0.5% wt/v) in the mixture, facilitates faster network formation as observed by Dynamic Light Scattering, with lower elastic modulus than the hydrogels formed with higher phospholipid content. The nano-porous structure of Ch/P hydrogels, with a diameter of 260±20 nm, as observed by cryo-scanning electron microscopy, facilitated the penetration of water and swelling. Cell studies revealed suitable biocompatibility of the Ch/P hydrogels that can be used within life sciences applications.

General information
State: Published
Authors: Mendes, A. C. L. (Intern), Shekarforoush, E. (Intern), Engwer, C. (Ekstern), Beeren, S. (Intern), Goycoolea, F. M. (Ekstern), Chronakis, I. S. (Intern)
Pages: 905-916
Publication date: 2016
Conference: 12th Conference of the European Chitin Society, Münster, Germany, 30/08/2016 - 30/08/2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Pure and Applied Chemistry
Volume: 88
Issue number: 9
ISSN (Print): 0033-4545
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.972 SNIP 1.049 CiteScore 2.45
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.885 SNIP 0.853 CiteScore 2.09
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.066 SNIP 1.244 CiteScore 2.76
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.134 SNIP 1.145 CiteScore 2.72
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.347 SNIP 1.224 CiteScore 2.8
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.215 SNIP 1.058 CiteScore 2.56
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.987 SNIP 0.882
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.185 SNIP 0.988
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.103 SNIP 1.086
Scopus rating (2007): SJR 1.266 SNIP 1.059
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.722 SNIP 0.943
Scopus rating (2005): SJR 0.778 SNIP 0.995
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.595 SNIP 0.834
Scopus rating (2003): SJR 0.815 SNIP 0.986
Electrospinning of Chitosan-Xanthan Nanofibers

Electrospun chitosan-xanthan gum nanofibers were produced and the correlation between the rheological properties of chitosan-xanthan solutions and electrospinability were investigated at different xanthan gum concentrations. Uniform chitosan-xanthan nanofibers with diameters ranging from 382±182 to 842±296 nm were developed based on the chitosan-xanthan gum content. Overall chitosan-xanthan gum solutions exhibited shear thinning behavior for all the concentrations tested, which tended to increase with the increase of concentration of xanthan. Furthermore the electrical conductivity of the chitosan-xanthan solutions was observed to increase with the increase of xanthan gum concentrations. We can conclude that the optimal electrospinning process is directed by the apparent viscosity properties and the electrical conductivity of the chitosan-xanthan solutions. We are currently investigating the utilisation of these electrospun chitosan-xanthan nanofibers as a carrier for bioactive compounds.

Electrospraying Chitosan Particles for Oral Vaccine Delivery
Electrospraying particles for loading into microcontainers for drug delivery

General information

State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Department of Micro- and Nanotechnology, Nanoprobes, Technical University of Denmark, University of Granada
Authors: Sevilla Moreno, J. A. (Intern), Boutrup Stephansen, K. (Intern), Nielsen, L. H. (Intern), Chronakis, I. S. (Intern), Boisen, A. (Intern)
Publication date: 2016
Event: Abstract from 42nd International conference on Micro and Nano Engineering, Vienna, Austria.
Main Research Area: Technical/natural sciences
Electronic versions:
Electrospraying_particles_for_loading_into_microcontainers_for_drug_delivery.pdf

Bibliographical note
For poster presentation
Source: PublicationPreSubmission
Source-ID: 127315846
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2016

Abstract
The encapsulation of fish oil in poly(vinyl alcohol) (PVA) nanofibers by emulsion electrospinning was investigated. Independently of the emulsifier used, whey protein isolate (WPI) or fish protein hydrolysate (FPH), PVA concentration had a high influence on fiber morphology. Fibers without bead defects were only produced for solutions with 10.5% (w/w) PVA, which presented sufficient number of polymer chain entanglements. On the other hand, increasing oil load from 1.5 to 3% (w/w) resulted in fibers with larger diameters containing spindle-like enlargements interspersed. High omega-3 encapsulation efficiency (92.4 ± 2.3%) was obtained for fibers produced from 10.5% (w/w) PVA-5% (w/w) emulsion blend stabilized with WPI, resulting in an oil load capacity of 11.3 ± 0.3%. Moreover, the encapsulated oil was randomly distributed as small droplets inside the fibers. However, the electrospun fibers presented a higher content of hydroperoxides and secondary oxidation products (e.g. 1-penten-3-ol, hexanal, octanal and nonanal) compared to emulsified and unprotected fish oil.
Introduction: Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration[1],[2]. Hydrogels have been most commonly mineralized with calcium phosphate (CaP), but hydrogel-CaCO3 composites have received less attention. Magnesium (Mg) has been added to CaP to stimulate cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In this study, gellan gum (GG) hydrogels were mineralized enzymatically with (CaCO3), Mg-enriched CaCO3 and magnesium carbonate to generate composite biomaterials for bone regeneration. GG is an inexpensive, biotechnologically produced anionic polysaccharide, from which hydrogels for cartilage regeneration have been formed by crosslinking with divalent ions[3].

Methods: GG hydrogels were loaded with the enzyme urease by incubation in 5% (w/v) urease solution and mineralized for 5 days in five different media denoted as UA, UB, UC, UD and UE, which contained urea (0.17 M) and different concentrations of CaCl2 and MgCl2 (270:0, 202.5:67.5, 135:135, 67.5:202.5 and 0:250, respectively (mmol dm-3)). Discs were autoclaved and subjected to physiochemical, mechanical and cell biological characterization.

Results: FTIR, SEM, TGA and XRD analysis revealed that increasing magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite formed at high magnesium concentration in the absence of calcium. Amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. ICP analysis revealed that Ca:Mg elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels promoted adhesion and growth of osteoblast-like cells, which were supported best on mineralized hydrogels containing no or little magnesium. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity.

Discussion: Enzymatic mineralization of GG hydrogels with CaCO3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but Mg enrichment had no positive effect. This is in contrast with other studies reporting that incorporation of Mg into GG mineralized with CaP promotes cell adhesion and proliferation[4].

Conclusion: Sample groups UA and UB seem to be the most promising due to the superior amount of mineral formed and cell adhesion and proliferation.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Ghent University, AGH University of Science and Technology
Number of pages: 2
Publication date: 2016
Event: Abstract from 10th World Biomaterials Congress, Montreal, Canada.
Main Research Area: Technical/natural sciences
Hydrogel, Enzyme, Biomimetic, Composite
Electronic versions:
Frontiers_Enzymatic_urease-mediated_...pdf
DOIs:
10.3389/conf.FBIOE.2016.01.00370
Links:
http://www.frontiersin.org/10.3389/conf.fbioe.2016.01.00370/event_abstract

Bibliographical note
Poster presentation
Source: PublicationPreSubmission
Source-ID: 127118782
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2016

Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery
Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exhibited average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the Ch/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system.
Hybrid matrices of TiO2 and TiO2–Ag nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent

TiO2 and TiO2–Ag nanofibers were produced by electrospinning technique and surface coated on silicone elastomer (diameter: 10.0 mm; thickness: 2.0 mm) by dipcoating method. These coated hybrid nanoporous matrices were characterized by various morphological and physicochemical techniques (like SEM, TEM, XRD, FTIR, EDS and UV). These characterizations reveal that the surface morphology of electrospun nanofibers remain intact by the dipcoating technique. The produced hybrid matrices of TiO2 and TiO2–Ag silicone were utilized as photocatalysts to degrade dairy waste water with an efficient water flux and water photosplitting properties.

General information
State: Published
Authors: Kanjwal, M. A. (Intern), Alm, M. (Ekstern), Thomsen, P. (Ekstern), Barakat, N. A. (Ekstern), Chronakis, I. S. (Intern)
Pages: 142-149
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Industrial and Engineering Chemistry
Volume: 33
ISSN (Print): 1226-086X
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 1.119 SNIP 1.442 CiteScore 4.3
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.945 SNIP 1.423 CiteScore 3.74
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.871 SNIP 1.458 CiteScore 3.25
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.695 SNIP 1.136 CiteScore 2.19
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.809 SNIP 1.324 CiteScore 2.31
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.85 SNIP 1.183 CiteScore 2.25
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.84 SNIP 1.026
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.722 SNIP 1.055
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.493 SNIP 0.783
Scopus rating (2007): SJR 0.466 SNIP 0.989
Scopus rating (2006): SJR 0.341 SNIP 0.592
Scopus rating (2005): SJR 0.474 SNIP 0.929
Hybrid matrices of ZnO nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent

Zinc oxide (ZnO) nanofibers were produced by electrospinning technique and surface coated on silicone elastomer substrate (diameter: 10.0 mm; thickness: 2.0 mm) by a dipcoating method. The obtained hybrid nanoporous matrices were investigated by scanning and transmission electron microscopy (SEM, TEM), X-ray diffraction (XRD) and Fourier transformation infrared techniques (FTIR). These characterizations reveal that the surface morphology of electrospun nanofibers remained intact by the dipcoating technique. The produced hybrid matrices showed high water flux of 9407 L/m(2)h, 38% removal rate of dairy effluent (DE) and 2298 ml/g h rate of hydrogen production. (C) 2016 Elsevier B.V. All rights reserved.

General information
State: Published
Authors: Kanjwal, M. A. (Intern), Shawabkeh, A. Q. (Ekstern), Alm, M. (Ekstern), Thomsen, P. (Ekstern), Barakat, N. A. M. (Ekstern), Chronakis, I. S. (Intern)
Number of pages: 6
Pages: 495-500
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Materials Chemistry and Physics
Volume: 181
ISSN (Print): 0254-0584
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.651 SNIP 0.902 CiteScore 2.14
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.708 SNIP 1.004 CiteScore 2.32
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.856 SNIP 1.298 CiteScore 2.59
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.818 SNIP 1.265 CiteScore 2.38
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.916 SNIP 1.445 CiteScore 2.41
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.95 SNIP 1.466 CiteScore 2.56
ISI indexed (2011): ISI indexed yes
Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodyoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Research Group for Food Production Engineering, University of Copenhagen
Authors: Boutrup Stephansen, K. (Intern), García-Díaz, M. (Ekstern), Jessen, F. (Intern), Chronakis, I. S. (Intern), Nielsen, H. M. (Ekstern)
Number of pages: 8
Pages: 748-755
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Molecular Pharmaceutics
Volume: 13
Issue number: 3
ISSN (Print): 1543-8384
Investigation of the Interaction between Mucins and β-Lactoglobulin under Tribological Stress

The interaction characteristics between mucins and beta-lactoglobulin (BLG) under tribological stress were investigated by comparing the lubricity of mixed solutions of mucineBLG with that of neat protein solutions at compliant hydrophobic interfaces. Surface adsorption properties of the proteins as characterized by bicinchoninic acid (BCA) assay revealed that both bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM) showed distinctly higher adsorbed masses compared to BLG onto polydimethylsiloxane (PDMS) or polystyrene (PS) surfaces. The adsorbed masses of the mixed protein solutions, namely BLGeBSM and BLGePGM, reduced significantly, and BLG appeared to dominate the surface adsorption event, presumably due to the reduced concentration of mucins and the Vroman effect. While pin-on-disk tribometry and mini-traction machine (MTM) were employed to provide the tribological contacts with varying contact pressure, speed range, and slide/roll ratio, the dominant lubrication mechanism of the protein solutions was boundary lubrication. BLGeBSM mixture showed the highest level of degradation in the lubricity of BSM at pH 5, although BLGesaliva interaction is known to degrade the lubricity most rapidly at more acidic pH, such as at pH 3.5. More importantly, pH dependent lubricating properties of BLGeBSM mixed solutions appeared to be determined by competitive adsorption of the two proteins onto the substrates, which suggests that they do not form as strong aggregates as BLGesaliva, especially under tribological stress.
Tribology, Beta-lactoglobulin, Bovine submaxillary mucin, Porcine gastric mucin, Ph
Optical sensors from electrohydrodynamic jetted polymer fiber resonators

Electrohydrodynamic jetting is used to manufacture dye-doped polymer fiber resonators. We present comb-like laser emission from different polymer/dye combinations and report the use of these structures as sensitive detection of ethanol and methanol.

Oxidative Stability of Nano-Microstructures containing fish oil

Electrohydrodynamic processing is a straightforward and versatile encapsulation technique suitable for the production of nano-microstructures (NMS) (e.g. fibers and capsules) containing bioactive compounds. The process is very gentle and does not require the use of heat, avoiding deterioration of thermolabile active compounds such as fish oil. Moreover, encapsulates produced present a decreased size, which allows their incorporation into food systems without affecting product sensory qualities.

In this work, electrohydrodynamic processing and oxidative stability of NMS containing fish oil were investigated. For that purpose, three different biopolymers namely pullulan, dextran and whey protein concentrate (WPC) were evaluated as encapsulating materials. First, the influence of biopolymer concentration on the physical properties (e.g. viscosity, conductivity and surface tension) of the biopolymer solutions and on the morphology of NMS was assayed. Secondly, the oxidative stability of the biopolymer solutions containing emulsified fish oil during storage (14 days at 40 °C) and of NMS loaded with fish oil (e.g. pullulan fibers and dextran and WPC capsules) was determined. Finally, to improve the oxidative status of the NMS, pullulan fibers, dextran capsules and WPC capsules were produced by adding neat fish oil instead of emulsified fish oil to the biopolymer solutions. These latter NMS presented a higher oxidative stability, which may be due to a better entrapment of the fish oil into biopolymer encapsulates.
Oxidative stability of pullulan nanofibers loaded with fish oil: effect of oil content and antioxidants addition

Electrospinning processing is a promising technique for the encapsulation of thermolabile bioactive compounds (e.g. fish oil) since it does not require the use of heat. Furthermore, the nano-microfibers (NMF) obtained present a reduced size, which makes them easier to disperse in food matrices compared to traditional encapsulates (e.g. microcapsules produced by spray-drying). Biopolymers such as proteins and polysaccharides are required for the production of food-grade NMF. In this sense, pullulan, which is a food-approved polysaccharide, is an interesting encapsulating material due to its high electrospinnability and low oxygen permeability.

In light of the above, the aim of this work was to investigate the oxidative stability of omega-3 enriched pullulan NMF. First, the influence of fish oil content (10-20-30 %) on the properties of the electrospinning solutions (e.g. viscosity, conductivity and surface tension) as well as on the morphology of NFM and oxidative stability of NMF during storage (20 days at 20 °C and relative humidity of 33%) was studied. Secondly, the effect on the oxidative stability of the NMS of incorporating hydrophilic antioxidants (e.g. EDTA) to pullulan solutions and/or lipophilic antioxidants (e.g. tocopherols) to fish oil was evaluated. Preliminary results show that neat fish oil can be incorporated into pullulan NMS by adding 30% Tween20 (by weight to respect to fish oil content), leading to NMS not containing antioxidants with a peroxide value lower that 20 meq O2/kg oil at day 0.
A new strategy for synthesizing AgInS2 quantum dots emitting brightly in near-infrared window for in vivo imaging

A new strategy for fabricating water-dispersible AgInS2 quantum dots (QDs) with bright near-infrared (NIR) emission is demonstrated. A type of multidentate polymer (MDP) was synthesized and utilized as a compact capping ligand for the AgInS2 QDs. Using silver nitrate, indium acetate and sulfur-hydrazine hydrate complex as the precursors, MDP-capping AgInS2 QDs were synthesized in aqueous solution at room temperature. Characterization indicates that the MDP-capping AgInS2 QDs are highly photoluminescent in NIR window and possess good photostability. Also, the QDs are stable in different media and have low cytotoxicity. Nude mice photoluminescence imaging shows that the MDP-capping AgInS2 QDs can be well applied to in vivo imaging. These readily prepared NIR fluorescent nanocrystals have huge potential for biomedical applications.
AgInS2 quantum dots, In vivo imaging, Multidentate polymer, Near-infrared, Hydrates, Infrared devices, Lanthanum compounds, Medical applications, Organometallics, Biomedical applications, Fluorescent nanocrystals, In-Vivo imaging, Multidentate, Near Infrared, Near-infrared emissions, Photoluminescence imaging, Quantum dots emitting, Semiconductor quantum dots

DOIs:
10.1016/j.colsurfb.2014.11.041

Source: FindIt
Source-ID: 273338077
Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein

Proteins originating from natural sources may constitute a novel type of material for use in drug delivery. However, thorough understanding of the behavior and effects of such a material when processed into a matrix together with a drug is crucial prior to further development into a drug product. In the present study the potential of using bioactive electrospun fish sarcoplasmic proteins (FSP) as a carrier matrix for small therapeutic proteins was demonstrated in relation to the interactions with biological components of the intestinal tract. The inherent structural and chemical properties of FSP as a biomaterial facilitated interactions with cells and enzymes found in the gastrointestinal tract and displayed excellent biocompatibility. More specifically, insulin was efficiently encapsulated into FSP fibers maintaining its conformation, and subsequent controlled release was obtained in simulated intestinal fluid. The encapsulation of insulin into FSP fibers provided protection against chymotrypsin degradation, and resulted in an increase in insulin transport to around 12% without compromising the cellular viability. This increased transport was driven by interactions upon contact between the nanofibers and the Caco-2 cell monolayer leading to the opening of the tight junction proteins. Overall, electrospun FSP may constitute a novel material for oral delivery of biopharmaceuticals.
Design and characterization of self-assembled fish sarcoplasmic protein-alginate nanocomplexes

Macrostructures based on natural polymers are subject to large attention, as the application range is wide within the food and pharmaceutical industries. In this study we present nanocomplexes (NCXs) made from electrostatic self-assembly between negatively charged alginate and positively charged fish sarcoplasmic proteins (FSP), prepared by bulk mixing. A concentration screening revealed that there was a range of alginate and FSP concentrations where stable NCXs with similar properties were formed, rather than two exact concentrations. The size of the NCXs was 293 ± 3 nm, and the zeta potential was -42 ± 0.3 mV. The NCXs were stable in water, gastric buffer, intestinal buffer and HEPES buffered glycose, and at all pH values from 2 to 9 except pH 3, where they aggregated. When proteolytic enzymes were present in the buffer, the NCXs were degraded. Only at high concentrations the NCXs caused a decreased viability in HeLa and U2OS cell lines. The simple processing procedure and the high stability of the NCXs, makes them excellent candidates for use in the food and pharmaceutical industry. (C) 2015 Elsevier B.V. All rights reserved.
Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis

The effects of using electrospun chitosan fibres as a wrapping material for dry-ageing beef was studied and compared to traditional dry-ageing and wet-ageing of beef for up to 21 days. The chitosan treatment showed improved results in terms of yield, reduction of microbial counts, yeasts and moulds, and lighter appearance compared to traditional dry-ageing. Weight and trimming losses were minimal in the wet-ageing beef. However, significant growth of lactic acid bacteria was observed in this group. Transverse relaxation times indicated a lower degree of muscle denaturation during ageing in the chitosan dry-ageing beef compared to the traditional dry-ageing meat. A principal component analysis furthermore indicated that 60.6% of the variation between samples and ageing treatments could be described by differences in the water content and distribution in the muscle. The study showed that electrospun chitosan fibre mats have potential as a wrapping material for improved quality during dry-ageing of beef.

General information

State: Published
Scopus rating (2001): SJR 0.805 SNIP 0.99
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.728 SNIP 0.979
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.661 SNIP 0.937
Original language: English
Chitosan, Dry-ageing beef, Electrospinning, Low-field NMR, Wet-ageing beef, Beef, Chitin, Lactic acid, Magnetic field effects, Muscle, Nuclear magnetic resonance, Packaging, Principal component analysis, Ageing treatments, Chitosan fibres, Chitosan treatment, Lactic acid bacteria, Low field nuclear magnetic resonance, Microbial count, Transverse relaxation time, Meats
DOIs:
10.1016/j.foodchem.2015.03.088
Source: FindIt
Source-ID: 274551293
Publication: Research - peer-review › Journal article – Annual report year: 2015

Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities
Dye-doped polymer fiber networks fabricated with electrospinning exhibit comb-like laser emission. We identify randomly distributed ring resonators being responsible for lasing emission by making use of spatially resolved spectroscopy. Numerical simulations confirm this result quantitatively.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Optofluidics, National Food Institute, Division of Industrial Food Research, Research Group for Nano-Bio Science, Karlsruhe Institute of Technology
Authors: Krammer, S. (Ekstern), Vannahme, C. (Intern), Smith, C. (Intern), Grossmann, T. (Ekstern), Jenne, M. (Ekstern), Schierle, S. (Ekstern), Jørgensen, L. (Intern), Tran, N. M. (Ekstern), Chronakis, I. S. (Intern), Kristensen, A. (Intern), Kalt, H. (Ekstern)
Number of pages: 2
Publication date: 2015

Host publication information
Title of host publication: Proceedings of 2015 Conference on Lasers and Electro-Optics (CLEO)
Place of publication: San Jose, California United States
Publisher: IEEE
Article number: STh4G.3
ISBN (Electronic): 9781557529688
Main Research Area: Technical/natural sciences
Conference: 2015 Conference on Lasers and Electro-Optics 2015 (CLEO), San Jose, CA, United States, 10/05/2015 - 10/05/2015
DOIs:
10.1364/CLEO_SI.2015.STh4G.3
Source: FindIt
Source-ID: 275963353
Publication: Research - peer-review › Conference abstract in proceedings – Annual report year: 2015

Electrospun NiO, ZnO and composite NiO–ZnO nanofibers/photocatalytic degradation of dairy effluent
Among the food wastes, the dairy effluent (DE) is considered to be the most polluting one because of the large volume of wastewater generated and its high organic load. Photocatalytic degradation of DE and organic dye methylene blue (MB) was studied using Zinc oxide nanofibers (ZnO NFs), Nickel oxide nanofibers (NiO NFs) and composite Zinc oxide–Nickel oxide nanofibers (ZnO–NiO NFs). These nanomembranes were characterized in SEM, TEM, XRD and UV studies. The pristine nanofiber membranes were smooth and continuous, with an average diameter of about 400nm, and held their nanofibrous morphology even after calcination of 600°C and more than 3h of photocatalytic degradation of DE and MB dye. The ZnO NFs and NiO NFs were effective materials for degradation of DE and MB dye. NiO NFs and ZnO NFs showed a maximum degradation of 70% and 75% in DE and 50% and 60% in MB dye respectively, after 3h. The significant enhancement of degradation in the composite ZnO–NiO NFs is attributed to the photoactivity of material under visible light irradiation. The composite ZnO–NiO NFs eliminated 40% of DE and 65% of MB dye, after 1h and maximum degradation of 80% DE after 3h and 100% MB dye after 90min. Overall, this study also shows that the nanofibrous morphology strongly enhances the surface activity of the ZnO–NiO photocatalyst when utilized to degrade DE and MB dye at room temperature.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Chonbuk National University
Authors: Kanjwal, M. A. (Intern), Chronakis, I. S. (Intern), Barakat, N. A. (Ekstern)
Number of pages: 8
Pages: 12229-12236
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: Ceramics International
Volume: 41
Issue number: 9
ISSN (Print): 0272-8842
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.88 SJR 0.853 SNIP 1.304
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.846 SNIP 1.299 CiteScore 2.64
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.871 SNIP 1.668 CiteScore 2.76
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.812 SNIP 1.563 CiteScore 2.28
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.816 SNIP 1.766 CiteScore 2.08
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.922 SNIP 1.758 CiteScore 2.1
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.86 SNIP 1.299
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.937 SNIP 1.478
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.872 SNIP 1.658
Scopus rating (2007): SJR 0.91 SNIP 1.436
Scopus rating (2006): SJR 0.802 SNIP 1.218
Scopus rating (2005): SJR 0.522 SNIP 0.998
Scopus rating (2004): SJR 0.671 SNIP 1.495
Scopus rating (2003): SJR 0.692 SNIP 0.997
Scopus rating (2002): SJR 0.628 SNIP 0.872
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.558 SNIP 0.836
Scopus rating (2000): SJR 0.471 SNIP 0.799
Scopus rating (1999): SJR 0.501 SNIP 0.769
Original language: English
Dairy effluent, Electrospinning, Nickel oxide, Zinc oxide, Nickel oxide–Zinc oxide
Forming of Polymeric Tubular Micro-components.
This chapter is intended to provide an overview of three nontraditional shaping technologies for the forming of polymeric micro-tubes, which are hot embossing, blow molding, and cross rolling, as well as realization of a process chain and the integration of a modular machine-based manufacturing platform for the production of functional polymeric tubular micro-components. The chapter gives background on the current market and process development trends, followed by description of materials, process configuration, tool design and machine development for each processing technology as well as strategy for integration of the technologies and equipment into a common platform. Finally, potential applications of the technologies and facilities developed are highlighted.

General information
State: Published
Organisations: Department of Management Engineering, National Food Institute, Research Group for Nano-Bio Science, University of Strathclyde, Institute for Product Development, Sysmelec S.A, Fraunhofer Gesellschaft, Cologne University of Applied Sciences
Authors: Qin, Y. (Ekstern), Zhao, J. (Ekstern), Anyasodor, G. (Ekstern), Schütt Hansen, K. (Ekstern), Calderon, I. (Ekstern), Konrad, K. (Ekstern), Hartl, C. (Ekstern), Arentoft, M. (Intern), Chronakis, I. S. (Intern)
Pages: 179–200
Publication date: 2015

Host publication information
Title of host publication: Micromanufacturing Engineering and Technology
Publisher: Elsevier Science
Editor: Qin, Y.
ISBN (Print): 978-0-323-31149-6
Chapter: 8
Main Research Area: Technical/natural sciences
Forming machines, Forming tools, Micro-shaping, Polymeric tubes, Tubular micro-components
DOIs: 10.1016/B978-0-323-31149-6.00008-6
Publication: Research - peer-review › Book chapter – Annual report year: 2015

Highly functionalized nano-microstructures for Bioengineering

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science
Authors: Mendes, A. C. L. (Intern), Chronakis, I. S. (Intern)
Number of pages: 1
Publication date: 2015

Host publication information
Title of host publication: Book of Abstracts. DTU's Sustain Conference 2015
Place of publication: Lyngby
Publisher: Technical University of Denmark (DTU)
Article number: I-7
Main Research Area: Technical/natural sciences
Conference: DTU Sustain Conference 2015, Lyngby, Denmark, 17/12/2015 - 17/12/2015
Electronic versions:
I7_DTU_Sustain_2015.pdf

Bibliographical note
Poster presentation
Publication: Research - peer-review › Conference abstract in proceedings – Annual report year: 2015

Hybrid nanofibers of TiO₂-silicone and TiO₂-Ag-silicone for high water flux photocatalytic degradation of dairy effluent

General information
Integrated Micro/Nanofibrous PLGA-Collagen Scaffold: an Optimized Method for Plastic Compression of Collagen into PLGA Microfibers

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Uppsala University, Karolinska Institutet
Authors: Ajalloueian, F. (Intern), Hilborn, J. (Ekstern), Fossum, M. (Ekstern), Chronakis, I. S. (Intern)
Pages: 347-347
Publication date: 2015
Conference: 4th TERMIS World Congress, Boston, United States, 08/09/2015 - 08/09/2015
Main Research Area: Technical/natural sciences

Publication information
Journal: Tissue Engineering. Part A
Volume: 21
Issue number: Supplement 1
ISSN (Print): 1937-3341
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 1.168 SNIP 0.956 CiteScore 3.43
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.492 SNIP 1.085 CiteScore 4.03
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.557 SNIP 1.254 CiteScore 4.45
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.649 SNIP 1.293 CiteScore 4.4
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.984 SNIP 1.187 CiteScore 4.47
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.848 SNIP 1.121 CiteScore 4.24
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.294 SNIP 1.256
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.873 SNIP 0.781
Original language: English
Source: FindIt
Source-ID: 2281831867
Integrated micro/nanofibrous PLGA-Collagen scaffolds for bladder tissue regeneration

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Uppsala University, Karolinska Institutet
Authors: Ajalloueian, F. (Intern), Hilborn, J. (Ekstern), Fossum, M. (Ekstern), Chronakis, I. S. (Intern)
Number of pages: 1
Publication date: 2015

Host publication information
Title of host publication: Book of Abstracts. DTU's Sustain Conference 2015
Place of publication: Lyngby
Publisher: Technical University of Denmark (DTU)
Article number: Q-13
Main Research Area: Technical/natural sciences
Conference: DTU Sustain Conference 2015, Lyngby, Denmark, 17/12/2015 - 17/12/2015
Electronic versions: Q13_DTU_Sustain_2015.pdf

Bibliographical note
Poster presentation

Interactions between electrospun fibers and the surrounding biological environment; cells and small molecules

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Research Group for Food Production Engineering, University of Copenhagen
Authors: Stephansen, K. (Intern), García-Díaz, M. (Ekstern), Jessen, F. (Intern), Nielsen, H. M. (Ekstern), Chronakis, I. S. (Intern)
Number of pages: 1
Publication date: 2015

Host publication information
Title of host publication: Book of Abstracts. DTU's Sustain Conference 2015
Place of publication: Lyngby
Publisher: Technical University of Denmark (DTU)
Article number: I-8
Main Research Area: Technical/natural sciences
Conference: DTU Sustain Conference 2015, Lyngby, Denmark, 17/12/2015 - 17/12/2015
Electronic versions: I8_DTU_Sustain_2015.pdf

Bibliographical note
Poster presentation

Micro- and nano-structures such as micro- and nano-fibers and micro- and nano-particles based on polymers (synthetic and natural) can be processed by electrospinning. Electrospun micro- and nano-structures are an exciting class of novel materials due to several unique characteristics, including their micro- and nano-meter diameter, the extremely high surface area per unit mass, the very small pore size, and their tunable surface properties. To this may be added their cost-effectiveness. Significant progress has been made in this field in the past few years, and the resultant micro- and nano-structures may serve as a highly versatile platform for a broad range of applications in areas such as medicine, pharmacy, sensors, catalysis, filter, composites, ceramics, packaging, electronics, and photonics. Some latest developments in the processing and applications of micro- and nano-structured polymers by electrospinning are presented.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science
Authors: Chronakis, I. S. (Intern)
Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 +/- 2.7 \(\mu \)m. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 +/- 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h. (c) 2015 AIP Publishing LLC.
Oxidative stability of electrospun nanofibers loaded with fish oil

General information
State: Published
Organisations: National Food Institute, Research Group for Bioactives – Analysis and Application, Research Group for Nano-Bio Science, University of Granada
Authors: García Moreno, P. J. (Intern), Boutrup Stephansen, K. (Intern), Guadix, A. (Ekstern), Guadix, E. M. (Ekstern), Chronakis, I. S. (Intern), Jacobsen, C. (Intern)
Number of pages: 1
Pages: 30-30
Publication date: 2015

Host publication information
Title of host publication: Fats, oils and lipids: New challenges in technology, quality control and health : Book of abstracts
Phospholipid electrospun nanofibers: effect of solvents and co-axial processing on morphology and fiber diameter

Asolectin phospholipid nano-microfibers were prepared using electrospinning processing. The asolectin fibers were studied by scanning electron microscopy, and the fiber morphology was found to be strongly dependent on the phospholipid concentration and the solvents used. The solvents studied were chloroform : dimethylformamide (CHCl₃ : DMF, 3 : 2 v/v), isooctane, cyclohexane and limonene, producing phospholipid fibers with average diameters in the range of 2.57 +/- 0.59 μm, similar to 3-8 μm, similar to 4-5 μm and 14.3 +/- 2.7 μm, respectively. The diameter of asolectin electrospun fibers does not follow the theoretically predicted value of similar to 0.35 μm because of the intermolecular aggregation between the reverse micelles formed in the highly concentrated asolectin solutions. However, when co-axial solvent electrospinning was applied, where the outer needle contains a pure solvent and the inner needle contains the asolectin solution in CHCl₃: DMF, a substantial reduction in the average fiber diameter was observed. In particular, the average diameter of the fibers when DMF (a solvent with a high dielectric constant) was used as a sheath solvent was reduced by a factor of about 7 and was at the nano-size range, as theoretically predicted. The dielectric constant of the solvents had a strong influence on the jet split properties and affected the morphology of the electrospun asolectin fibers.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, University of Copenhagen
Authors: Jørgensen, L. (Intern), Qvortrup, K. (Ekstern), Chronakis, I. S. (Intern)
Number of pages: 9
Pages: 53644-53652
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: R S C Advances
Volume: 5
Issue number: 66
ISSN (Print): 2046-2069
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.06 SJR 0.875 SNIP 0.743
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.959 SNIP 0.837 CiteScore 3.42
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.114 SNIP 0.965 CiteScore 3.87
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.117 SNIP 0.903 CiteScore 3.74
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): SJR 0.863 SNIP 0.603 CiteScore 2.4
ISI indexed (2012): ISI indexed no
Web of Science (2012): Indexed yes
Photocatalytic degradation of dairy effluent using AgTiO$_2$ nanostructures/polyurethane nanofiber membrane

Dairy effluent (DE) is environmentally toxic and needs special attention. Photocatalytic degradation of DE was studied using novel polyurethane (PU)-based membranes. Typically, silver-titanium dioxide nanofibers (AgTiO$_2$ NFs) and silver-titanium dioxide nanoparticles (AgTiO$_2$ NPs) were individually incorporated in PU electrospun nanofibers to overcome the mandatory sophisticated separation of the nanocatalysts, which can create a secondary pollution, after the treatment process. These nanomembranes were characterized in SEM, TEM, XRD and UV studies. The polymeric electrospun nanofibers were smooth and continuous, with an average diameter of about 550nm, and held their nanofibrous morphology even after more than 2h of photocatalytic degradation of DE, due to the good stability of PU in the aqueous solutions, which indicates good imprisoning of the functional photocatalysts. The PU-AgTiO$_2$ NPs and PU-AgTiO$_2$ NFs were effective materials for degradation of DE, even after two successive cycles. PU-AgTiO$_2$ NPs and PU-AgTiO$_2$ NFs showed a maximum degradation of 75% and 95%, respectively after 2h. The significant enhancement of degradation in the PU-Ag-TiO$_2$ NPs and PU-Ag-TiO$_2$ NFs is attributed to the photoactivity of Ag-TiO$_2$ material under visible light irradiation.

General information
State: Published
Organisations: National Food Institute, Division of Industrial Food Research, El-Minia University
Authors: Kanjwal, M. A. (Intern), Barakat, N. A. (Ekstern), Chronakis, I. S. (Intern)
Number of pages: 7
Pages: 9615-9621
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: Ceramics International
Volume: 41
Issue number: 8
ISSN (Print): 0272-8842
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.88 SJR 0.853 SNIP 1.304
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.846 SNIP 1.299 CiteScore 2.64
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.871 SNIP 1.668 CiteScore 2.76
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.812 SNIP 1.563 CiteScore 2.28
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.816 SNIP 1.766 CiteScore 2.08
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.922 SNIP 1.758 CiteScore 2.1
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Production of omega-3 nanodelivery systems by emulsion electrospinning

General information
State: Published
Organisations: National Food Institute, Research Group for Bioactives – Analysis and Application, Research Group for Nano-Bio Science
Authors: García Moreno, P. J. (Intern), van der Kruijs, J. (Ekstern), Boutrup Stephansen, K. (Intern), Chronakis, I. S. (Intern), Jacobsen, C. (Intern)
Number of pages: 1
Pages: 22-22
Publication date: 2015

Host publication information
Title of host publication: Electrospinning: principles, practice and possibilities 2015 : Programme and abstract book
Place of publication: London, Uk
Main Research Area: Technical/natural sciences
Conference: Electrospinning: principles, practice and possibilities 2015, London, United Kingdom, 03/12/2015 - 03/12/2015

Relations
Projects:
Production of omega-3 nanodelivery systems by emulsion electrospinning
Source: PublicationPreSubmission
Source-ID: 121138006
Publication: Research - peer-review › Conference abstract in proceedings – Annual report year: 2016

Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin
The structural changes occurring during the interaction between β-lactoglobulin (BLG), the major whey protein, and bovine submaxillary mucin (BSM), a major salivary protein, were studied using high and low field Nuclear Magnetic Resonance (NMR), Dynamic Light Scattering (DLS), and Circular Dichroism (CD) spectroscopy. The zeta potentials of the proteins were also measured to provide information on the role of electrostatic forces in the interaction. The ratio between BLG and BSM was 1:1, and pH was adjusted to 3.0, 5.0 and 7.4 at room temperature. These spectroscopic results suggested that
the interaction between BSM and BLG led to a compact aggregation. DLS results of the mixture showed a size distribution which is intermediate between that of BLG (215 nm) and BSM (200 nm). While no particular changes in the secondary structure were observed in either BSM or BLG, a weak tertiary structure, observed in BLG only, was further weakened upon interaction with BSM. High field NMR results for the BSM-BLG mixture indicated that spectral differences were mostly observed for solvent exposed groups, especially the mucin glycan chains, while hydrophobic core residues were less affected. The interaction between the two proteins can thus be concluded to be mostly of hydrophilic origin. Moreover, low field NMR measurements showed a decrease in transverse relaxation times in the mixture compared to the pure BLG and buffer solutions. This is possibly connected to fewer hydrophilic binding sites available in the BLG–BSM mixtures for water–protein interaction after aggregation of the two proteins.

General information
State: Published
Organisations: National Food Institute, Research Group for Nano-Bio Science, Department of Chemistry, Organic Chemistry, Department of Mechanical Engineering, Materials and Surface Engineering
Authors: Celebioglu, H. Y. (Intern), Guðjónsdóttir, M. (Intern), Meier, S. (Intern), Duus, J. Ø. (Intern), Lee, S. (Intern), Chronakis, I. S. (Intern)
Number of pages: 8
Pages: 203-210
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: Food Hydrocolloids
Volume: 50
ISSN (Print): 0268-005X
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): SJR 2.043 SNIP 2.041 CiteScore 5.1
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.846 SNIP 1.966 CiteScore 4.53
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.251 SNIP 2.564 CiteScore 5.21
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 2.1 SNIP 2.292 CiteScore 4.81
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.866 SNIP 2.086 CiteScore 3.69
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.615 SNIP 1.921 CiteScore 3.57
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.743 SNIP 1.513
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.728 SNIP 1.781
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.484 SNIP 1.654
Scopus rating (2007): SJR 1.563 SNIP 1.726
Scopus rating (2006): SJR 1.267 SNIP 1.634
Scopus rating (2005): SJR 1.007 SNIP 1.381
Bioactive electrospun fish sarcoplasmic proteins as a drug delivery system

Nano-microfibers were made from cod (Gadus morhua) sarcoplasmic proteins (FSP) (M_w < 200 kDa) using the electrospinning technique. The FSP fibers were studied by scanning electron microscopy, and the fiber morphology was found to be strongly dependent on FSP concentration. Interestingly, the FSP fibers were insoluble in water. However, when exposed to proteolytic enzymes, the fibers were degraded. The degradation products of the FSP fibers proved to be inhibitors of the diabetes-related enzyme DPP-IV. The FSP fibers may have biomedical applications, among others as a delivery system. To demonstrate this, an adipotide (Ala-Trp) was encapsulated into the FSP fibers, and the release properties were investigated in gastric buffer and in intestinal buffer. The release profile showed an initial burst release, where 30% of the compound was released within the first minute, after which an additional 40% was released (still exponential) within the next 30 min (gastric buffer) or 15 min (intestinal buffer). The remaining 30% was not released in the timespan of the experiment. © 2014 Elsevier B.V. All rights reserved.
Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

Purpose: Protein-based electrospun fibers have emerged as novel nanostructured materials for tissue engineering and drug delivery due to their unique structural characteristics, biocompatibility and biodegradability. The aim of this study was to explore the use of electrospun fibers based on fish sarcoplasmic proteins as an oral delivery platform for biopharmaceuticals, using insulin as a model protein. Methods: Fish sarcoplasmic proteins (FSP) were isolated from fresh cod and electrospun into nanomicrofibers using insulin as a model payload. The morphology of FSP fibers was characterized using scanning electron microscopy (SEM), and the conformational stability of insulin was confirmed by circular dichroism (CD). The in vitro release and enzymatic degradation of encapsulated insulin was measured in different buffers and quantified using RP-HPLC. The permeability of released insulin across differentiated Caco-2 cell monolayers was followed by RP-HPLC and ELISA, and the transepithelial electrical resistance (TEER) was measured before and after the experiment. Cell viability was assessed by the MTS/PMS assay. Results: Insulin was encapsulated in the electrospun FSP fibers with high efficiency, high loading and without any effect on fiber morphology. Release of insulin in vitro was 75% after 3 h in simulated intestinal fluid. The secondary structure of insulin was preserved after release, and insulin functionality was confirmed by ELISA. Insulin permeability across Caco-2 cell monolayers was significantly enhanced when administered encapsulated in FSP fibers. The TEER was decreased after 4 h incubation, and no negative effect on cell viability was observed at any time. Conclusion: In this work we present electrospun FSP fibers as a novel oral drug delivery system for biopharmaceuticals. The electrospinning process did not affect the functionality of the encapsulated insulin and it provided controlled release kinetics. The epithelial permeability enhancing effect and biocompatibility of the FSP fibers provide evidence for further investigating protein-based electrospun nanofibers for delivery of proteins and peptides.
Gold nanoparticles–gelatin hybrid fibers with bright photoluminescence

In the present work, a type of hybrid fibers—gold nanoparticles (GNPs)–gelatin fibers were designed. Spinning solutions for the sub-micron fibers were prepared by adding gelatin, ethylene diamine tetraacetic acid (EDTA) and chloroauric acid in water successively. The EDTA reduced the chloroauric acid and gave rise to in situ synthesis of GNPs in the spinning solutions. The GNPs–gelatin fibers were fabricated by electrospinning the spinning solutions. The GNPs were encapsulated in the fibers, which endowed the fibers photoluminescence (PL) characteristics. A variety of experiments were performed to characterize the structure and properties of the GNPs–gelatin fibers. This work provides new perspectives for the fabrication of functional nanocomposite fibers.

General information
State: Published
Organisations: National Food Institute, Division of Industrial Food Research, Shanghai Jiaotong University, Jiangnan University
Authors: Liu, S. (Ekstern), Tan, L. (Ekstern), Li, X. (Ekstern), Fu, J. (Ekstern), Chronakis, I. S. (Intern), Ge, M. (Ekstern)
Pages: 1-4
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication information
Journal: Materials Letters
Volume: 135
ISSN (Print): 0167-577X
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.51 SJR 0.757 SNIP 0.935
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.792 SNIP 1.021 CiteScore 2.5
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.895 SNIP 1.315 CiteScore 2.64
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.83 SNIP 1.237 CiteScore 2.41
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.924 SNIP 1.404 CiteScore 2.41
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.017 SNIP 1.568 CiteScore 2.54
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.059 SNIP 1.29
BFI (2009): BFI-level 1
In this work, hybrid nanosphere vehicles consisting of cadmium selenide quantum dots (CdSe QDs) were synthesized for nitric oxide (NO) donating and real-time detecting. The nanospheres with QDs being encapsulation have spherical outline with dimension of ~127 nm. The fluorescence properties of the mHP conjugated QDs are sensitivity and high selectivity for NO against oxidation products from NO. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems.

Hyperbranched polyether hybrid nanospheres with CdSe quantum dots incorporated for selective detection of nitric oxide

In this work, hybrid nanosphere vehicles consisting of cadmium selenide quantum dots (CdSe QDs) were synthesized for nitric oxide (NO) donating and real-time detecting. The nanospheres with QDs being encapsulation have spherical outline with dimension of ~127 nm. The fluorescence properties of the mHP conjugated QDs are sensitivity and high selectivity for NO against oxidation products from NO. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems.

General information

State: Published
Organisations: National Food Institute, Division of Industrial Food Research, Jiangnan University
Authors: Liu, S. (Ekstern), Jin, L. (Ekstern), Chronakis, I. S. (Intern), Li, X. (Intern), Ge, M. (Ekstern)
Pages: 104-106
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication information

Journal: Materials Letters
Volume: 123
ISSN (Print): 0167-577X
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.51 SJR 0.757 SNIP 0.935
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.792 SNIP 1.021 CiteScore 2.5
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.895 SNIP 1.315 CiteScore 2.64
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.83 SNIP 1.237 CiteScore 2.41
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
In this study, we have investigated the lubricating properties of an aqueous fluid prepared with polyoxamer triblock copolymer in water, namely "F127-20" (F127 at the concentration of 20% wt./vol.). In coherence with its well-known thermo-responsive rheological properties, lubricating properties of F127-20 also displayed varying lubricating properties, both in the lubricating mechanism and efficacy, as a function of temperature, speed and tribopairs. F127-20 was most effective in lubricating a soft interface (PDMSePDMS) based on its gel-forming properties in 22.5-60 °C and feasible formation of hydrodynamic lubricating films at all speeds. More importantly, enhanced shear thinning of F127-20 and an optimum pressure opposed from PDMSePDMS tribological contact led to a substantial reduction in viscosity of the lubricant and smooth gliding of the interface while maintaining fluidic lubricating films. At temperatures lower or higher than temperature range 22.5-60 °C, F127-20 behaved as a liquid, and boundary lubrication became the dominant lubrication mechanism. © 2014 Elsevier Ltd. All rights reserved.
Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multifunctionalities

A nicotine imprinted polymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using methacrylic acid (MAA) as a functional monomer. The resulting molecularly imprinted polymers were monodispersed beads with an average diameter of 1.55 mm. The molecular selectivity of the imprinted polymer beads was evaluated by studying the uptake of nicotine and its structural analogs by the polymer beads. Equilibrium binding results indicate that the amount of nicotine bound to the imprinted polymer beads is significantly higher than that bound to the nonimprinted polymer in both acetonitrile and in a mixture of acetonitrile and water. The RAFT reagent present on the surface of the polymer beads allowed straightforward grafting of hydrophilic polymer brushes on the particle surface. In addition to the demonstrated molecular selectivity and the straightforward surface modification of the imprinted polymer beads, we also show that the dithioester end groups on the surface of the polymer beads can be converted into new thiol groups without sacrificing the specific molecular recognition. Through the new terminal thiol groups, a fluorescent dye was conveniently conjugated to the imprinted polymer beads via Michael addition reaction. The living characteristic of RAFT and the versatile thiol groups that can be derived from the RAFT reagent provide many new possibilities for realizing multifunctionalities for molecularly imprinted polymers.

General information
State: Published
Organisations: National Food Institute, Division of Industrial Food Research, Lund University
Authors: Zhou, T. (Ekstern), Jørgensen, L. (Intern), Mattebjerg, M. A. (Intern), Chronakis, I. S. (Intern), Ye, L. (Ekstern)
Number of pages: 6
Pages: 30292-30299
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication information
Journal: R S C Advances
Volume: 4
Issue number: 57
ISSN (Print): 2046-2069
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.06 SJR 0.875 SNIP 0.743
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.959 SNIP 0.837 CiteScore 3.42
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.114 SNIP 0.965 CiteScore 3.87
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.117 SNIP 0.903 CiteScore 3.74
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): SJR 0.863 SNIP 0.603 CiteScore 2.4
ISI indexed (2012): ISI indexed no
Web of Science (2012): Indexed yes
Original language: English
Electronic versions:
Molecularly_imprinted_polymer.pdf
DOI:
10.1039/c4ra04741a
Publication: Research - peer-review › Journal article – Annual report year: 2014

Nano-microdelivery systems for oral delivery of an active ingredient
A composition for oral delivery of one or more active ingredients in the form of a lipid nano-micro-delivery system comprising a lipid nano-micro-structure comprising at least one lipid and at least one active ingredient, said at least one active ingredient being immobilized in said lipid nano-micro-structure; and at least one enzyme.
Nano-microdelivery systems for oromucosal delivery of an active ingredient

A composition for oromucosal delivery of at least one active ingredient, more particularly a lipid nano-microdelivery system comprising a nicotine component and/or a flavour component, wherein the nicotine component may be delivered to the oral cavity via absorption through the mucosal membranes thereof and/or wherein the flavour component may be delivered to the oral mucosa by controlled release.

Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide

In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ~127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems.
Random-Cavity Lasing from Electrospun Polymer Fiber Networks

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Optofluidics, National Food Institute, Division of Industrial Food Research, Karlsruhe Institute of Technology
Authors: Kräammer, S. (Ekstern), Vannahme, C. (Intern), Smith, C. (Intern), Grossmann, T. (Ekstern), Jenne, M. (Ekstern), Schierle, S. (Ekstern), Jørgensen, L. (Intern), Chronakis, I. S. (Intern), Kristensen, A. (Intern), Kalt, H. (Ekstern)
Number of pages: 5
Pages: 8096-8100
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication information
Journal: Advanced Materials
Volume: 26
Issue number: 48
ISSN (Print): 0935-9648
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 17.79
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 18.5
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 16.79
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 15.78
Relationship between Beta-Lactoglobulin and Bovine Submaxillary Mucin: Structure and Tribology Studies

For food oral processing, any specific component in the food products and its structural changes in varying environment can give crucial influence on the sensory acceptance of the products. The objective of this research was to investigate the inter-action between beta-Lactoglobulin (BLG), the major whey protein, and bovine submaxillary mucin (BSM), a (model) major salivary component, when mixed (1:1) at different pHs (pH 3.0, 5.0 and 7.4) in order to broaden our understanding of food oral processing on the molecular level. High and low field Nuclear Magnetic Resonance (NMR), Dynamic Light Scattering (DLS) and Circular Dichroism (CD) techniques were employed to study the structural changes. A Mini-Traction Machine (MTM) was then employed to investigate the friction and lubrication properties of the proteins at a compliant interface, as a mimic of oral processing of dairy products.

General information
State: Published
Organisations: National Food Institute, Division of Industrial Food Research, Department of Chemistry, Organic Chemistry, Department of Mechanical Engineering, Materials and Surface Engineering
Authors: Celebioglu, H. Y. (Intern), Guðjónsdóttir, M. (Intern), Chronakis, I. S. (Intern), Duus, J. Ø. (Intern), Lee, S. (Intern)
Number of pages: 1
Publication date: 2014
Event: Poster session presented at 12th International Conference on the Applications of Magnetic Resonance in Food Science, Cesena, Italy.
Main Research Area: Technical/natural sciences
Electronic versions:
Relationship_between_Beta_Lactoglobulin.pdf
Source: PublicationPreSubmission
Source-ID: 99521969
Publication: Research › Poster – Annual report year: 2014

The viscoelastic properties of the cervical mucus plug
ObjectiveTo characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term.
DesignExperimental research. SettingDepartment of Obstetrics and Gynecology, Aarhus University Hospital, Denmark. Population/SampleSpontaneously shed CMPs from 18 healthy women in active labor. MethodsViscoelastic properties of CMPs were investigated with a dynamic oscillatory rheometer using frequency and stress sweep experiments within the linear viscoelastic region. Main outcome measuresThe rheological variables obtained were as follows: elastic modulus
(G), viscous modulus (G) and tan delta (G/G). Random-effects regression was used for statistical analysis. Results All CMPs showed solid-like viscoelastic behavior. This was substantiated by the elastic modulus which was three to four times greater than the viscous modulus and by tan delta, which was

General information

State: Published
Organisations: National Food Institute, Division of Industrial Food Research, Aarhus University Hospital
Authors: Bastholm, S. K. (Ekstern), Becher, N. (Ekstern), Stubbe, P. R. (Intern), Chronakis, I. S. (Intern), Uldbjerg, N. (Ekstern)
Pages: 201-208
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication information

Journal: Acta Obstetricia et Gynecologica Scandinavica
Volume: 93
Issue number: 2
ISSN (Print): 0001-6349
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 1.148 SNIP 1.213 CiteScore 1.84
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.229 SNIP 1.19 CiteScore 1.9
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.197 SNIP 1.294 CiteScore 2
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.092 SNIP 1.136 CiteScore 1.82
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.897 SNIP 1.012 CiteScore 1.62
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.952 SNIP 1.077 CiteScore 1.72
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.911 SNIP 1.009
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.896 SNIP 1.028
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.736 SNIP 0.923
Scopus rating (2007): SJR 0.796 SNIP 0.972
Scopus rating (2006): SJR 0.887 SNIP 1.014
Scopus rating (2005): SJR 0.902 SNIP 1.148
Scopus rating (2004): SJR 0.762 SNIP 1.104
Scopus rating (2003): SJR 0.757 SNIP 1.175
Scopus rating (2002): SJR 0.735 SNIP 0.998
Scopus rating (2001): SJR 0.628 SNIP 0.945
Scopus rating (2000): SJR 0.709 SNIP 0.981
Scopus rating (1999): SJR 0.642 SNIP 0.995
Original language: English
DOIs:
10.1111/aogs.12308
Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin

Fast-dissolving drug delivery systems were prepared by electrospinning using polyvinyl alcohol (PVA) as the filament-forming polymer and drug carrier. Caffeine and riboflavin were used as the model drugs. Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) and X-ray diffraction were applied to investigate the physicochemical properties of electrospun nanofibers. The SEM images showed that nanofibers prepared from electrospinning PVA/drug aqueous solutions possessed an ultrafine morphology with an average diameter in the range of 260-370 nm. Pharmacotechnical tests showed that PVA/caffeine and PVA/riboflavin nanofibrous mats had almost the same dissolution time (about 1.5 s) and wetting time (about 4.5 s). The release measurements indicated that drugs can be released in a burst manner (caffeine to an extent of 100% and riboflavin to an extent of 40% within 60 s) from the PVA nanofibrous matrices.

General information
State: Published
Organisations: National Food Institute, Division of Industrial Food Research, Jiangsu University
Authors: Li, X. (Intern), Kanjwal, M. A. (Intern), Lin, L. (Ekstern), Chronakis, I. S. (Intern)
Pages: 182-188
Publication date: 2013
Main Research Area: Technical/natural sciences

Publication information
Journal: Colloids and Surfaces B: Biointerfaces
Volume: 103
ISSN (Print): 0927-7765
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 1.058 SNIP 1.302 CiteScore 4.42
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.083 SNIP 1.242 CiteScore 4.26
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.199 SNIP 1.554 CiteScore 4.53
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.251 SNIP 1.585 CiteScore 4.64
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.229 SNIP 1.344 CiteScore 3.74
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.031 SNIP 1.254 CiteScore 3.49
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.956 SNIP 1.152
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.868 SNIP 1.144
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.959 SNIP 1.125
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.854 SNIP 1.04
Scopus rating (2006): SJR 0.719 SNIP 0.855
In this study, the influence of the temperature on the photodegradation process using Ag-doped TiO2 nanostructures was investigated. Two morphologies were used; nanoparticles and nanofibers. The nanofibers were synthesized by electrospinning of a sol–gel consisting of titanium isopropoxide, silver nitrate and poly(vinyl acetate). The silver nitrate amount was changed to produce nanofibers having different silver contents. Typically, sol–gels containing 0.5, 1.0, 1.5, 2.0 and 2.5 wt% silver nitrate were utilized. Calcination of the electrospun mats at 700 °C led to produce well morphology Ag-doped TiO2 nanofibers for all formulations. The nanoparticles were prepared from the same sol–gels, however, instead of spinning the gels were dried, ground and sintered at 700 °C. Photodegradation under UV irradiation for the rhodamine B at 5, 15, 25, 45 and 55 °C were performed. For the nanoparticles, increasing the temperature has positive impact as the best degradation was obtained at 55 °C. In contrast to the known influence of the temperature on the chemical reactions, in case of the nanofibrous morphology, the temperature has negative impact as the experimental work indicated that the optimum temperature is 25 °C. The observed strange effect of the temperature in case of the nanofibrous morphology indicates instant degradation of the dye molecules in the active zones surrounding the nanofibers. Therefore, the increase of temperature results in increase the kinetic energy of the dye molecules so the molecules escape from the active thin film surrounding the photocatalyst. Overall, this study shows that the nanofibrous morphology strongly enhances the surface activity of the photocatalyst which generates negative influence of the temperature.
Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers

In this study, the influence of the temperature on the photodegradation process using Ag-doped TiO2 nanostructures was investigated. Two morphologies were used: nanoparticles and nanofibers. The nanofibers were synthesized by electrospinning of a sol–gel consisting of titanium isopropoxide, silver nitrate and poly(vinyl acetate). The silver nitrate amount was changed to produce nanofibers having different silver contents. Typically, sol–gels containing 0.5, 1.0, 1.5, 2.0 and 2.5 wt% silver nitrate were utilized. Calcination of the electrospun mats at 700 °C led to produce well morphology Ag-doped TiO2 nanofibers for all formulations. The nanoparticles were prepared from the same sol–gels, however, instead of spinning the gels were dried, grindend and sintered at 700 °C. Photodegradation under UV irradiation for the rhodamine B at 5, 15, 25, 45 and 55 °C were performed. For the nanoparticles, increasing the temperature has positive impact as the best degradation was obtained at 55 °C. In contrast to the known influence of the temperature on the chemical reactions, in case of the nanofibrous morphology, the temperature has negative impact as the experimental work indicated that the optimum temperature is 25 °C. The observed strange effect of the temperature in case of the nanofibrous morphology indicates instant degradation of the dye molecules in the active zones surrounding the nanofibers. Therefore, the increase of temperature results in increase the kinetic energy of the dye molecules so the molecules escape from the active thin film surrounding the photocatalyst. Overall, this study shows that the nanofibrous morphology strongly enhances the surface activity of the photocatalyst which generates negative influence of the temperature.

General information
Molecularly Imprinted Nano- and Micro-structures by Electrospinning.

General information
State: Published
Organisations: National Food Institute, Division of Industrial Food Research, Lund University
Authors: Chronakis, I. S. (Intern), Ye, L. (Ekstern)
Pages: 197-219
Publication date: 2013

Host publication information
Title of host publication: Molecular Imprinting: Principles and Applications of Micro- and Nanostructured Polymers
Publisher: Pan Stanford Publishing
Editor: Ye, L.
ISBN (Print): 978-981-4310-99-4
ISBN (Electronic): 978-981-4364-87-4
Chapter: 6
Main Research Area: Technical/natural sciences
Source: dtu
Source-ID: u::7488
Publication: Research - peer-review › Book chapter – Annual report year: 2013

Process Chain for the Manufacture of Polymeric Tubular Micro-Components and "POLYTUBES Micro-Factory" Concept
The paper presents a process chain for the shaping of poly-meric tubular micro-components for the volume production as well as presents a concept for the integration of the developed processes and modular machines onto a platform to form a "POLYTUBES Micro-Factory", being resulting from the European FP7 POLYTUBES project which aimed at the development of new process capabilities and equipment for the shaping of polymeric micro-tubes into functional micro-components.

General information
State: Published
Organisations: National Food Institute, Division of Industrial Food Research, University of Strathclyde, Swerea AB, Sysmelec S.A, Fraunhofer Gesellschaft, Cologne University of Applied Sciences, Institute for Product Development, MASMEC s.r.l.
Authors: Qin, Y. (Ekstern), Perzon, E. (Ekstern), Chronakis, I. S. (Intern), Calderon, I. (Ekstern), Konrad, K. (Ekstern), Hartl, C. (Ekstern), Holtkamp, J. (Ekstern), Arentoft, M. (Ekstern), Larizza, P. (Ekstern), Zhao, J. (Ekstern), Schütt Hansen, K. (Ekstern), Ryff, J. (Ekstern), Sinisi, M. (Ekstern), Anyasodor, G. (Ekstern), Maier, F. (Ekstern)
Number of pages: 8
Publication date: 2013
Main Research Area: Technical/natural sciences
Micro-shaping, Polymer, Tubular micro components, Process chain, Modular machines

Bibliographical note
Paper 126
Publication: Research - peer-review › Paper – Annual report year: 2013

Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin
Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w/v) was mixed into an oil-in-water emulsion system (4.4% w/w oil, 0.22% w/w whey protein, pH 4.5). Two separate, identically composed, emulsion systems were prepared by different methods of preparation. The emulsions prepared separately and subsequently mixed with SBP (referred as Mix A) produced significantly larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed
oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher (P < 0.05) than the corresponding laccase catalyzed rates, but the final G0 values were higher for laccase catalyzed gels, regardless of the presence of emulsions or type of emulsion preparation (Mix A or Mix B). For both enzymes, rates of gelation in Mix A were higher (P < 0.05) than in Mix B, and higher stress was needed to break the gels in Mix A than in Mix B at similar enzyme dosage levels. These differences may be related to a lower availability of the feruloyl groups for cross-linking when the SBP was homogenized into the emulsion system during preparation.
The viscoelastic properties of the cervical mucus plug
The objective of this study was to characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. Spontaneously shed cervical mucus plugs from healthy women in active labor, were tested. The viscoelastic properties of cervical mucus plugs were investigated with using frequency and stress sweep experiments within the linear viscoelastic region. Random-effects regression was used for statistical analysis. The CMPs are solid-like viscoelastic structures and the elastic modulus dominated the viscous modulus at all frequencies. These rheological characteristics are probably essential for the CMP’s ability to form and sustain a plug in the cervical canal during pregnancy, thereby reducing the risk of ascending infections.

Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology
Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory measurements. The rates of gelation, catalyzed by horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2), respectively, were determined by measuring the slope of the increase of the elastic modulus (G’) with time at various enzyme dosages (0.125–2.0 U mL⁻¹). When evaluated at equal enzyme activity dosage levels, the two enzymes produced different gelation kinetics and the resulting gels had different rheological properties: HRP (with addition of H2O2) catalyzed a fast rate of gelation compared to laccase (no H2O2 addition), but laccase catalysis produced stronger gels (higher G’). The main effects and interactions between different factors on the
Gelation rates and gel properties were examined in response surface designs in which enzyme dosage (0.125–2.0 U mL⁻¹ for HRP; 0.125–10 U mL⁻¹ for laccase), substrate concentration (1.0–4.0%), temperature (25–55 °C), pH (3.5–5.5), and H₂O₂ (0.1–1.0 mM) (for HRP only) were varied. Gelation rates increased with temperature, substrate concentration, and enzyme dosage; for laccase catalyzed SBP gelation the gel strengths correlated positively with increased gelation rate, whereas no such correlation could be established for HRP catalyzed gelation and at the elevated gelation rates (>100 Pa min⁻¹) gels produced using laccase were stronger (higher G’) than HRP catalyzed gels at similar rates of gelation. Chemical analysis confirmed the formation of ferulic acid dehydrodimers (diFAs) by both enzymes supporting that the gelation was a result of oxidative cross-linking of FAs.

General information
State: Published
Organisations: Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Division of Industrial Food Research, National Food Institute
Authors: Abang Zaidel, D. N. (Intern), Chronakis, I. S. (Intern), Meyer, A. S. (Intern)
Pages: 130-140
Publication date: 2012
Main Research Area: Technical/natural sciences

Publication information
Journal: Food Hydrocolloids
Volume: 28
Issue number: 1
ISSN (Print): 0268-005X
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): SJR 2.043 SNIP 2.041 CiteScore 5.1
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.846 SNIP 1.966 CiteScore 4.53
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.251 SNIP 2.564 CiteScore 5.21
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 2.1 SNIP 2.292 CiteScore 4.81
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.866 SNIP 2.086 CiteScore 3.69
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.615 SNIP 1.921 CiteScore 3.57
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.743 SNIP 1.513
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.728 SNIP 1.781
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.484 SNIP 1.654
Scopus rating (2007): SJR 1.563 SNIP 1.726
Scopus rating (2006): SJR 1.267 SNIP 1.634
Scopus rating (2005): SJR 1.007 SNIP 1.381
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.058 SNIP 1.408
Influence of mucolytic compounds on rehydrated porcine gastric mucin

General information
State: Published
Organisations: Department of Mechanical Engineering, Materials and Surface Engineering, National Food Institute, Division of Industrial Food Research
Authors: Pakkanen, K. I. (Intern), Olander Petersen, H. (Intern), Chronakis, I. S. (Intern), Lee, S. (Ekstern)
Publication date: 2012
Main Research Area: Technical/natural sciences
Publication: Research - peer-review › Poster – Annual report year: 2012

Influence of template/functional monomer/cross-linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles

A series of molecularly imprinted polymer nanoparticles have been synthesized employing various template/functional monomer/crosslinking monomer ratio and characterized in detail to elucidate the correlation between the synthetic conditions used and the properties (e.g., particle size and template binding properties) of the obtained nanoparticles. In brief, the presence of propranolol (template) in the polymerization mixture turned out to be a critical factor on determination of the size as well as the binding properties of the imprinted nanoparticles. The functional monomer/crosslinking monomer ratio significantly affects the binding capability of the imprinted nanoparticles, but its influence on the size of the nanoparticles was found to be rather limited. The results obtained provide valuable clues for designing molecularly imprinted nanoparticle preparation in future studies, where fine tuning of particle size and binding properties are required to fit practical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

General information
State: Published
Organisations: Division of Industrial Food Research, National Food Institute, Lund University, National Institute for Materials Science
Authors: Yoshimatsu, K. (Ekstern), Yamazaki, T. (Ekstern), Chronakis, I. S. (Intern), Ye, L. (Ekstern)
Pages: 1249-1255
Publication date: 2012
Main Research Area: Technical/natural sciences
Publication information
Journal: Journal of Applied Polymer Science
Volume: 124
Issue number: 2
ISSN (Print): 0021-8995
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.73 SJR 0.532 SNIP 0.724
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.574 SNIP 0.827 CiteScore 1.74
Web of Science (2015): Indexed yes
Preparing photochromic nanofibers and animal cells using a photochromic compound of 1′,3′,3′-trimethyl-6-nitrospiro (2H-1-benzopyran-2,2′-indoline)

In this work, the photochromic compound 1′,3′,3′-trimethyl-6-nitrospiro (2H-1-benzopyran-2,2′-indoline) (NOSP) was synthesized by a two step process. The photochromic properties of NOSP were investigated by ultraviolet-visible (UV–Vis) spectrophotometry. The results showed that NOSP was very sensitive to UV irradiation with absorption peaks at about 336nm and 567nm. Our hypothesis was that both photochromic nanofibers and photochromic living animal cells could be obtained by combining them with NOSP. To test the hypothesis, photochromic nanofibers were fabricated by electrospinning from various mixed solutions of NOSP and polymers (including a synthetic polymer of poly(methyl methacrylate) and a natural polymer of gelatin); NOSP/ethanol solution was dissolved in culture medium to stain pig iliac endothelial cells (PIEC) and endow them with photochromic capability. Polymer nanofibers from electrospinning were characterized by water contact angle measurements, ultraviolet-visible (UV–Vis) spectrophotometry and fluorescence
microscopy. Morphology of photochromic PIEC was observed by fluorescence microscopy after being irradiated. It was shown that nanofibers from electrospun polymers and NOSP-treated PIEC had photochromic properties. The bio-toxicity of the photochromic compound was also evaluated and it was shown that ~50% of PIEC remained viable for at least 20min. The photochromic compound NOSP could be a potentially powerful tool for development of multi-functional nanofibers and biological applications.

General information

State: Published
Organisations: National Food Institute, Jiangsu University, Donghua University
Authors: Li, X. (Intern), Lin, L. (Ekstern), Kanjwal, M. A. (Intern), Chronakis, I. S. (Intern), Liu, S. (Ekstern), Chen, Y. (Ekstern)
Pages: 67-72
Publication date: 2012
Main Research Area: Technical/natural sciences

Publication information

Journal: Colloids and Surfaces B: Biointerfaces
Volume: 89
Issue number: 1
ISSN (Print): 0927-7765
Ratings:
- BFI (2017): BFI-level 1
- Web of Science (2017): Indexed Yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): SJR 1.058 SNIP 1.302 CiteScore 4.42
- BFI (2015): BFI-level 1
- Scopus rating (2015): SJR 1.083 SNIP 1.242 CiteScore 4.26
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): SJR 1.199 SNIP 1.554 CiteScore 4.53
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): SJR 1.251 SNIP 1.585 CiteScore 4.64
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): SJR 1.229 SNIP 1.344 CiteScore 3.74
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): SJR 1.031 SNIP 1.254 CiteScore 3.49
- ISI indexed (2011): ISI indexed yes
- Web of Science (2011): Indexed yes
- BFI (2010): BFI-level 1
- Scopus rating (2010): SJR 0.956 SNIP 1.152
- BFI (2009): BFI-level 1
- Scopus rating (2009): SJR 0.868 SNIP 1.144
- BFI (2008): BFI-level 1
- Scopus rating (2008): SJR 0.959 SNIP 1.125
- Web of Science (2008): Indexed yes
- Scopus rating (2007): SJR 0.854 SNIP 1.04
- Scopus rating (2006): SJR 0.719 SNIP 0.855
- Web of Science (2006): Indexed yes
- Scopus rating (2005): SJR 0.707 SNIP 0.921
- Scopus rating (2004): SJR 0.596 SNIP 0.824
- Web of Science (2004): Indexed yes
- Scopus rating (2003): SJR 0.696 SNIP 0.998
Preparing poly (caprolactone) micro-particles through solvent-induced phase separation

Poly (caprolactone) (PCL) particles with the size distribution from 1 to 100 μm were prepared through solvent-induced phase separation, in which polyvinyl-alcohol (PVA) was used as the matrix-forming polymer to stabilize PCL particles. The cloud point data of PCL-acetone-water was determined by the titration method. PCL-acetone and PVA-water solutions, PCL-PVA gel, and PCL particles suspension were recorded by a digital camera. The morphology of PCL-PVA suspension and PCL particles were observed by optical microscopy and scanning electron microscopy, respectively. The size distribution of PCL particles was investigated by a particle size analyzer. Results from differential scanning calorimeter indicated that the main interaction between PCL and PVA were mediated through hydrogen bonding.
Zinc oxide's hierarchical nanostructure and its photocatalytic properties

In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol) was performed to produce polymeric nanofibers embedding solid nanoparticles. Calcination of the obtained electrospun nanofiber mats in air at 500 °C for 90 minutes produced pure ZnO nanofibers with rough surfaces. The rough surface strongly enhanced outgrowing of ZnO nanostructures when a specific hydrothermal technique was used. Methylene blue dihydrate was used to check the photocatalytic ability of the produced nanostructures. The results indicated that the hierarchical nanostructure had a better performance than the other form.

General information
State: Published
Organisations: Division of Industrial Food Research, National Food Institute, University of Texas-Pan American, Chonbuk National University
Authors: Kanwail, M. A. (Intern), Sheikh, F. A. (Ekstern), Barakat, N. A. M. (Ekstern), Li, X. (Intern), Kim, H. Y. (Ekstern), Chronakis, I. S. (Intern)
Pages: 3695-3702
Publication date: 2012
Main Research Area: Technical/natural sciences

Publication information
Journal: Applied Surface Science
Volume: 258
Issue number: 8
ISSN (Print): 0169-4332
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.37 SJR 0.951 SNIP 1.225
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.914 SNIP 1.3 CiteScore 3.13
Algal proteins

General information
State: Published
Organisations: Division of Food Production Engineering, National Food Institute
Biologically Active Polycaprolactone/Titanium Hybrid Electrospun Nanofibers for Hard Tissue Engineering

In this study, a novel strategy to improve the bioactivity of polycaprolactone nanofibers is proposed. Incorporation of pure titanium nanoparticles into polycaprolactone nanofibers strongly enhances the precipitation of bone-like apatite materials when the doped nanofibers are soaked in a simulated body fluid. The introduced nanofibers have been prepared by electrospinning of a colloid composed of a polycaprolactone solution and titanium nanopowder. A mixed solvent composed of N,N dimethyl formammide and methyl chloride has been utilized to dissolve the polycaprolactone. The physiochemical characterizations have affirmed the embedding of the titanium nanoparticles in the polycaprolactone nanofibers. Moreover the results have revealed that the bioactivity of the polycaprolactone is directly proportional to the content of the titanium nanoparticles. Overall, the high porosity of the electrospun nanofiber mats and the successful incorporation of the titanium nanoparticles make the prepared polycaprolactone nanofiber mat a proper candidate for the hard-tissue engineering applications.

Co3O4–ZnO hierarchical nanostructures by electrospinning and hydrothermal methods

A new hierarchical nanostructure that consists of cobalt oxide (Co3O4) and zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, cobalt acetate tetrahydrate and poly(vinyl alcohol) was performed to produce polymeric nanofibers embedding solid nanoparticles. Calcination of the obtained electrospun nanofiber mats in air at 600°C for 1h, produced Co3O4 nanofibers with rough surfaces containing ZnO nanoparticles (i.e., ZnO-doped Co3O4 nanofibers). The rough surfaced nanofibers, containing ZnO nanoparticles (ZnNPs), were then exploited as seeds to produce ZnO nanobranches using a specific hydrothermal technique. Scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to characterize the as-spun nanofibers and the calcined product. X-ray powder diffractometry (XRD) analysis was used to study the chemical composition and the crystallographic structure.
Co$_3$O$_4$, ZnO, Co$_3$O$_4$-ZnO Nanofibers and Their Properties

General information
State: Published
Organisations: National Food Institute, Division of Industrial Food Research, University of Texas-Pan American, Chonbuk National University
Authors: Kanjwal, M. A. (Intern), Sheikh, F. A. (Ekstern), Barakat, N. A. M. (Ekstern), Li, X. (Intern), Yong Kim, H. (Ekstern), Chronakis, I. S. (Intern)
Pages: 196-202
Publication date: 2011
Main Research Area: Technical/natural sciences
Publication information
Journal: Journal of Nanoengineering and Nanomanufacturing
Volume: 1
Issue number: 2
Original language: English
Cobalt oxide, Zinc oxide, Nanofibers, Photocatalyst, Mechanical properties, Electrospinning
Electronic versions: 28764d01.pdf
DOIs: 10.1166/jnan.2011.1016
Publication: Research - peer-review » Journal article – Annual report year: 2012

Fabrication of Mineralized Collagen from Bovine Waste Materials by Hydrothermal Method as Promised Biomaterials
In the present study, we aimed to produce mineralized-collagen by hydrothermal process. A simple method not depending on additional foreign chemicals has been employed to isolate the mineralized-collagen fibers from bovine waste. The process of extraction involves the use of hydrothermal method from available bovine bones. The structural and morphological properties of the collagen fibers were characterized by using scanning electron microscopy and transmission electron microscopy. These results indicated well received collagen fibers, having a diameter less than 1 m and with established mineral content in the individual fibers. The X-ray diffraction showed the crystalline feature of the obtained nano-compounds. The thermo gravimetric analysis was used to differentiate between the collagen and mineral parts of obtained product. Overall, the results generously indicated production of well received collagen fibers from bovine bones.

General information
State: Published
Organisations: Division of Industrial Food Research, National Food Institute, University of Texas-Pan American, Technische Universiteit Eindhoven, Chonbuk National University
Authors: Sheikh, F. A. (Ekstern), Kanjwal, M. A. (Intern), Macossay, J. (Ekstern), Muhammad, M. A. (Ekstern), Cantu, T. (Ekstern), Chronakis, I. S. (Intern), Barakat, N. A. M. (Ekstern), Kim, H. Y. (Ekstern)
Pages: 194-197
Publication date: 2011
Main Research Area: Technical/natural sciences
Publication information
Journal: Journal of Biomaterials and Tissue Engineering
Volume: 1
Issue number: 2
ISSN (Print): 2157-9083
Ratings: BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.36 SNIP 0.45 CiteScore 1.37
Influences of Silver-Doping on the Crystal Structure, Morphology and Photocatalytic Activity of TiO\textsubscript{2} Nanofibers

Doping of titanium dioxide nanofibers by silver nanoparticles revealed distinct improvement in the photocatalytic activity; however other influences have not been investigated. In this work, effect of silver-doping on the crystal structure, the nanofibrous morphology as well as the photocatalytic activity of titanium oxide nanofibers has been studied. Silver-doped TiO\textsubscript{2} nanofibers having different silver contents were prepared by calcination of electrospun nanofiber mats consisting of silver nitrate, titanium isopropoxide and poly(vinyl acetate) at 600°C. The results affirmed formation of silver-doped TiO\textsubscript{2} nanofibers composed of anatase and rutile when the silver nitrate content in the original electrospun solution was more than 3 wt%. The rutile phase content was directly proportional with the AgNO\textsubscript{3} concentration in the electrospun solution. Negative impact of the silver-doping on the nanofibrous morphology was observed as increase the silver content caused to decrease the aspect ratio, i.e. producing nanorods rather nanofibers. However, silver-doping leads to modify the surface roughness. Study of the photocatalytic degradation of methylene blue dye clarified that increase the silver content strongly enhances the dye oxidation process.
Hybrid (organic/inorganic) nanofibers

General information
State: Published
Organisations: Swerea AB
Authors: Chronakis, I. S. (Intern), Ye, L. (Ekstern)
Publication date: 2010

Host publication information
Title of host publication: Advances in Solid Hybrid Materials and Membranes
Editor: Xu, T.
ISBN (Print): 978-81-7895-461-5
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 263587
Publication: Research - peer-review › Book chapter – Annual report year: 2010

Nano-microfibers by Electrospinning Technology: Processing, Properties and Applications

General information
State: Published
Organisations: Swerea AB
Authors: Chronakis, I. S. (Intern)
Pages: 264-286
Publication date: 2010

Host publication information
Title of host publication: Micromanufacturing Engineering and Technology
Publisher: Elsevier
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 263586
Publication: Research - peer-review › Book chapter – Annual report year: 2010

Nano-micromaterials processing, analysis, inspection and materials knowledge based management

General information
State: Published
Organisations: Swerea AB
Authors: Chronakis, I. S. (Intern), Mekras, N. (Ekstern), Fuentes, G. (Ekstern), Stifter, D. (Ekstern), Hofer, C. (Ekstern), Qin, Y. (Ekstern)
Pages: 963-971
Publication date: 2010
Main Research Area: Technical/natural sciences

Publication information
Journal: International Journal of Advanced Manufacturing Technology
Volume: 47
ISSN (Print): 0268-3768
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.967 SNIP 1.548 CiteScore 2.3
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.858 SNIP 1.274 CiteScore 1.8
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.084 SNIP 1.879 CiteScore 2.03
Web of Science (2014): Indexed yes
Nanostructured Conductive Polymers by Electrospinning

General information
State: Published
Organisations: Swerea AB
Authors: Chronakis, I. S. (Intern)
Pages: 163-207
Publication date: 2010

Host publication information
Title of host publication: Nanostructured Conductive Polymers
Publisher: Wiley - VCH
Editor: Eftekhari, A.
ISBN (Print): 10: 0-470-74585-1
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 263667
Publication: Research - peer-review › Book chapter – Annual report year: 2010
Metal-polymer Composite Nanofibres by Electrospinning

General information
State: Published
Organisations: Unknown
Authors: Verma, S. (Ekstern), Tahir, A. (Ekstern), Fredholm, A. (Ekstern), Chronakis, I. S. (Intern)
Pages: 25-29
Publication date: 2009
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Nanostructured Polymers and Nanocomposites
Volume: 5
Issue number: 2
ISSN (Print): 1790-4439
Ratings:
Scopus rating (2016): SJR 0.114 SNIP 0.241 CiteScore 0.13
Scopus rating (2015): SJR 0.142 SNIP 0.103 CiteScore 0.26
Scopus rating (2014): SJR 0.14 SNIP 0.125 CiteScore 0.29
Scopus rating (2013): SJR 0.167 SNIP 0.194 CiteScore 0.3
ISI indexed (2013): ISI indexed no
Scopus rating (2012): SJR 0.157 SNIP 0.202 CiteScore 0.4
ISI indexed (2012): ISI indexed no
Scopus rating (2011): SJR 0.17 SNIP 0.23 CiteScore 0.3
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.247 SNIP 0.117
Scopus rating (2009): SJR 0.326 SNIP 0.298
Scopus rating (2008): SJR 0.141 SNIP 0.229
Scopus rating (2007): SJR 0.188 SNIP 0.743
Scopus rating (2006): SJR 0.104 SNIP 0.215
Original language: English
Source: orbit
Source-ID: 262207
Publication: Research - peer-review › Journal article – Annual report year: 2009

Nano-fiber scaffold electrodes based on PEDOT for cell stimulation

General information
State: Published
Organisations: Linköping University, Karolinska Institutet, Swerea AB
Authors: Bolin, M. H. (Ekstern), Svennersten, K. (Ekstern), Wang, X. (Ekstern), Chronakis, I. S. (Intern), Richter-Dahlfors, A. (Ekstern), Jager, E. H. (Ekstern), Berggren, M. (Ekstern)
Pages: 451-456
Publication date: 2009
Main Research Area: Technical/natural sciences

Publication information
Journal: Sensors and Actuators B: Chemical
Volume: 142
Issue number: 2
ISSN (Print): 0925-4005
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.07 SJR 1.333 SNIP 1.463
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.25 SNIP 1.509 CiteScore 4.84
Web of Science (2015): Indexed yes
Scintillation Micro/Nanofibers

General information
State: Published
Organisations: Unknown
Authors: Ye, L. (Ekstern), Chronakis, I. S. (Intern), Yoshimatsu, K. (Ekstern)
Publication date: 2009

Publication information
Country: Sweden
Patent number: SE000231
Date: 31/01/2008
Original language: English
A simple method for preparation of molecularly imprinted nanofiber materials with signal transduction ability

A simple electrospinning method is developed to introduce signal transduction ability into molecularly imprinted nanofibers.

General information
State: Published
Organisations: Swerea AB
Authors: Yoshimatsu, K. (Ekstern), Ye, L. (Ekstern), Stenlund, P. (Ekstern), Chronakis, I. S. (Intern)
Pages: 2022-2024
Publication date: 2008
Main Research Area: Technical/natural sciences

Publication information
Journal: Chemical Communications
Issue number: 17
ISSN (Print): 1359-7345
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.06 SJR 2.506 SNIP 1.159
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 2.664 SNIP 1.314 CiteScore 6.7
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.701 SNIP 1.446 CiteScore 6.83
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 2.755 SNIP 1.38 CiteScore 6.73
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 3.09 SNIP 1.347 CiteScore 6.21
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 2.857 SNIP 1.322 CiteScore 5.96
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.709 SNIP 1.232
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.588 SNIP 1.252
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.791 SNIP 1.236
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.851 SNIP 1.237
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.366 SNIP 1.183
Selective molecular adsorption using electrospun nanofiber membranes

Molecularly imprinted nanoparticles were encapsulated into polymer nanofibers with a simple electrospinning method. The composite nanofibers form non-woven mats that can be used as affinity membrane to greatly simplify solid phase extraction of drug residues in analytical samples. Upward 100% of propranolol-imprinted nanoparticles can be easily encapsulated into poly(ethylene terephthalate) nanofibers, ensuring the composite materials to have a high specific binding capacity. As confirmed by radioligand binding analysis, the specific binding sites in the composite materials remain easily accessible and are chiral-selective. Using the new composite nanofiber mats as solid phase extraction materials, trace amount of propranolol (1 ng mL\(^{-1}\)) in tap water can be easily detected after a simple sample preparation. As validated in this study, there is no problem of template leakage from the composite nanofibers. Without the solid phase extraction, the existence of propranolol residues in water cannot be confirmed with even tandem HPLC-MS/MS analysis.

(c) 2007 Elsevier B.V. All rights reserved.
Electrospun aliphatic polycarbonates as tailored tissue scaffold materials

Two different aliphatic polycarbonates were synthesised from CO2 and the respective epoxides. Poly(propyl carbonate) (PPC) was prepared by heterogeneous catalysis with zinc glutarate. Poly(cyclohexyl carbonate) (PCHC) was prepared via living copolymerisation homogeneously catalysed by a 3-amino-2-cyanoimidoacrylate zinc acetate complex and subjected to electrospinning. The obtained nanofibres had a well-defined morphology free of beads along the fibres and with slightly porous structures on their surface. Subsequently, low-power deep UV irradiations, previously applied for photochemical surface modifications of two-dimensional and three-dimensional scaffolds from biostable polymers, were performed. Here, an effect on surface and bulk properties of PPC nanofibres was observed. Surface modifications of both polymers affected plasma protein adsorption. Photochemical bulk modifications observed for the first time on PPC nanofibres are indicating the possibility of spatial control of biodegradation rates, hence allow for control of the progression of host/implant interactions in vivo. In particular PPC was used for cell culture of L929 fibroblasts and primary rat hepatocytes. Even delicate primary cells showed good adhesion to the scaffolds and high viability.

General information
State: Published
Organisations: Forschungs Zentrum Karlsruhe GmbH, Swedish Institute for Fiber and Polymer Research
Authors: Welle, A. (Ekstern), Kröger, M. (Ekstern), Döring, M. (Ekstern), Niederer, K. (Ekstern), Pindel, E. (Ekstern), Chronakis, I. S. (Intern)
Pages: 2211-2219
Publication date: 2007
Main Research Area: Technical/natural sciences
Encapsulation and exfoliation of inorganic lamellar fillers into polycaprolactone by electrospinning

The present paper reports, for the first time, the successful fabrication of layered double hydroxide (Mg-Al LDH)-reinforced polycaprolactone (PCL) nanofibers by electrospinning. Either the LDH in carbonate form or an LDH organically modified with 12-hydroxydodecanoic acid (LDH-HA) were incorporated into PCL and electrospun using a voltage of 20 KV. The LDH-HA was prepared by an ionic exchange reaction from pristine LDH and encapsulated into PCL from acetone solution's at 15 wt %. The morphological analysis showed pure PCL fibers with an average diameter of 600 +/- 50 nm, and this dimension was maintained in the fibers With LDH, with the inorganic component residing outside the fibers and not exfoliated. At variance, the fibers with the LDH-HA showed a significantly lower average diameter in the range of 350 50 nm, indicating the improved electrospinnability of PCL. Moreover, the inorganic lamellae were exfoliated, as shown by X-rays and residing inside the nanofibers as demonstrated by energy dispersive X-ray spectroscopy analysis. The structural parameters, such as degradation temperature and crystallinity, were investigated for all the samples and correlated with the electrospinning process.

General information
State: Published
Organisations: University of Salerno, Swedish Institute for Fiber and Polymer Research
Authors: Romeo, V. (Ekstern), Gorrasi, G. (Ekstern), Vittoria, V. (Ekstern), Chronakis, I. S. (Intern)
Pages: 3147-3152
Publication date: 2007
Main Research Area: Technical/natural sciences

Publication information
Journal: Biomacromolecules
Volume: 8
Issue number: 10
ISSN (Print): 1525-7797
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.74 SJR 1.973 SNIP 1.334
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 2.134 SNIP 1.449 CiteScore 6.05
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.207 SNIP 1.652 CiteScore 6.38
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 2.085 SNIP 1.617 CiteScore 6.07
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 2.317 SNIP 1.677 CiteScore 5.72
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.213 SNIP 1.777 CiteScore 5.74
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.333 SNIP 1.66
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.288 SNIP 1.6
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties

Conductive polypyrrole nanofibers with diameters in the range of about 70-300 nm were obtained using electrospinning processes. The conductive nanofibers had well-defined morphology and physical stability. Two methods were employed. Electrospun nanofibers were prepared from a solution mixture of polypyrrole (PPy), and poly(ethylene oxide) (PEO) acted as a carrier in order to improve PPy processability. Both the electrical conductivity and the average diameter of PPy nanofibers can be controlled with the ratio of PPy/PEO content. In addition, pure (without carrier) polypyrrole nanofibers were also able to be formed by electrospinning organic solvent soluble polypyrrole, [(PPy3)(+) (DEHS)(-)][x], prepared using the functional doping agent di(2-ethylhexyl) sulfosuccinate sodium salt (NaDEHS) [Jang KS, Lee H, Moon B. Synth Met 2004; 143:289-94. 124]. Electrospun blends of sulfonic acid (SO3H)-bearing water soluble polypyrrole, [PPy(SO3H)-DEHS], with PEO acting as a carrier, are also reported. The factors that facilitate the formation of electrical conduction paths through the electrospun nanofiber segments are discussed. (c) 2006 Elsevier Ltd. All rights reserved.
Encapsulation and Selective Recognition of Molecularly Imprinted Theophylline and 17β-Estradiol Nanoparticles within Electrospun Polymer Nanofibers

General information
State: Published
Organisations: Lund University, Swedish Institute for Fiber and Polymer Research
Authors: Chronakis, I. S. (Intern), Jakob, A. (Ekstern), Hagström, B. (Ekstern), Ye, L. (Ekstern)
Pages: 8960-8965
Publication date: 2006
Main Research Area: Technical/natural sciences

Publication information
Journal: Langmuir
Volume: 22
ISSN (Print): 0743-7463
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.99 SJR 1.55 SNIP 1.188
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.686 SNIP 1.308 CiteScore 4.33
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.816 SNIP 1.391 CiteScore 4.59
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.895 SNIP 1.356 CiteScore 4.55
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 2.177 SNIP 1.382 CiteScore 4.37
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 2.051 SNIP 1.357 CiteScore 4.42
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.148 SNIP 1.4
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.156 SNIP 1.351
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.383 SNIP 1.34
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.449 SNIP 1.434
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.375 SNIP 1.428
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.157 SNIP 1.463
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.963 SNIP 1.458
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.953 SNIP 1.4
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.011 SNIP 1.489
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.01 SNIP 1.382
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.039 SNIP 1.479
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.719 SNIP 1.496
Original language: English
Source: orbit
Source-ID: 262202
Publication: Research - peer-review › Journal article – Annual report year: 2006
Generation of Molecular Recognition Sites in Electrospun Polymer Nanofibers via Molecular Imprinting

General information
State: Published
Organisations: Lund University, Swedish Institute for Fiber and Polymer Research
Authors: Chronakis, I. S. (Intern), Milosevic, B. (Ekstern), A., F. (Ekstern), Ye, L. (Ekstern)
Pages: 357-361
Publication date: 2006
Main Research Area: Technical/natural sciences

Publication information
Journal: Macromolecules
Volume: 39
ISSN (Print): 0024-9297
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.76 SJR 2.557 SNIP 1.507
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 2.407 SNIP 1.638 CiteScore 5.82
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.534 SNIP 1.721 CiteScore 5.83
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 2.576 SNIP 1.754 CiteScore 6.09
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 2.779 SNIP 1.58 CiteScore 5.35
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 2.556 SNIP 1.593 CiteScore 5.15
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.51 SNIP 1.51
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.962 SNIP 1.533
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.819 SNIP 1.54
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.102 SNIP 1.613
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.987 SNIP 1.714
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.579 SNIP 1.654
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.606 SNIP 1.691
Manufacturing of Polymer Micro and Nanostructures

General information
State: Published
Organisations: Swedish Institute for Fiber and Polymer Research
Authors: Chronakis, I. S. (Intern), Hägström, B. (Ekstern), Walkenström, B. (Ekstern)
Publication date: 2006

Host publication information
Title of host publication: Proceedings of 4th International Conference on Manufacturing Research
Place of publication: Liverpool
ISBN (Print): 0-9553215-0-6
Main Research Area: Technical/natural sciences
Conference: Proceedings of 4th International Conference on Manufacturing Research, 01/01/2006
Source: orbit
Source-ID: 263684
Publication: Research - peer-review › Article in proceedings – Annual report year: 2006

Metallic Micro/Nanofibers Produced via Electrospinning Processes

General information
State: Published
Organisations: Swedish Institute for Fiber and Polymer Research
Authors: Chronakis, I. S. (Intern), Verma, S. (Ekstern)
Publication date: 2006

Publication Information
Patent number: SE200602265-A; SE532133-C2
Original language: English
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 263677
Publication: Research › Patent – Annual report year: 2006

Molecular Imprinting Recognition Sites of Electrospun Polymer Nanofibers

General information
State: Published
Organisations: Swedish Institute for Fiber and Polymer Research
Authors: Chronakis, I. S. (Intern), Ye, L. (Ekstern)
Publication date: 2005

Publication Information
Patent number: SE200502041-A; SE530536-C2
Original language: English
Main Research Area: Technical/natural sciences
Source: orbit
Novel nanocopolisites and nanoceramics based on polymer nanofibers using electrospinning process-Review

General information
State: Published
Organisations: Swedish Institute for Fiber and Polymer Research
Authors: Chronakis, I. S. (Intern)
Pages: 283-293
Publication date: 2005
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Materials Processing Technology
Volume: 167
ISSN (Print): 0924-0136
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 1.701 SNIP 2.569 CiteScore 3.62
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.406 SNIP 2.49 CiteScore 2.9
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.15 SNIP 3.893 CiteScore 3.43
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.717 SNIP 3.479 CiteScore 2.87
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.733 SNIP 3.766 CiteScore 2.71
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.349 SNIP 3.216 CiteScore 2.52
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.215 SNIP 2.381
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.128 SNIP 1.755
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.001 SNIP 1.755
Scopus rating (2007): SJR 0.809 SNIP 1.562
Scopus rating (2006): SJR 0.768 SNIP 1.384
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.767 SNIP 1.063
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.716 SNIP 1.249
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.622 SNIP 1.027
We report on the modulation of phase morphology, plasticization properties, and thermal stability of films of partly branched poly(L-lactide)-co-poly(epsilon-caprolactone) copolymer (PLLA-co-PCL) with additions of low molecular weight compounds, namely, triethyl citrate ester, diethyl phthalate, diepoxy polyether (poly(propylene glycol) diglycidyl ether), and with epoxidized soybean oil (ESO). The PLLA-co-PCL/polyether films showed significant stability against thermal depolymerization, high film flexibility, and good plasticizing properties, probably due to cross-linking and chain branching formation between diepoxy groups with both the end carboxyl and hydroxyl groups of the PLLA copolymer (initially present or generated during the degradation process) to produce primary ester and ether bonds, respectively. Diethyl phthalate and triethyl citrate ester were found to be efficient plasticizers for PLLA copolymer in terms of glass transition and mechanical properties, but the more water-soluble plasticizer triethyl citrate induced a dramatic loss in the molecular weight of the copolymer. Although ESO cannot play the role of a plasticizer, it substantially stabilizes and retards thermal depolymerization of the PLLA copolymer matrix, possibly because of a reaction between epoxy groups with the end carboxyl and hydroxyl groups of the PLLA copolymer. The presence of ESO in PLLA-co-PCL/ESO/triethyl citrate blends enhanced the compatibility and miscibility of the plasticizer with the PLLA copolymer matrix, considerably improved the mechanical properties (elongation at break), and substantially stabilized the copolymer against thermal depolymerization. It seems likely that the epoxy groups interact not only with the end hydroxyl and carboxyl group of the copolymer but as well with the hydroxyl group of triethyl citrate plasticizer to produce a new ether bond (C-O-C) as the crosslinking unit. On the other hand, for PLLA-co-PCL/ESO/polyether blends, (80/10/10) epoxidized oil distorts the compactness of the blend by diminishing the proposed entanglements between carboxyl, hydroxyl, and diepoxy groups of polyether and reduces the high elongation properties otherwise observed in the PLLA-co-PCL/polyether films. The multicomponent approach toward modulating poly(L-lactide)-co-poly(epsilon-caprolactone) copolymer films using epoxy compounds and plasticizers and the insight into the nature of various PLLA matrixes presented here offer advantages to a broad engineering of PLLA copolymer films having desirable physical properties and multiphase behavior for efficient uses in future technical applications.
Complex formation in aqueous medium of partially hydrolysed oat cereal proteins with sodium stearoyl-2 lactylate (SSL) lipid surfactant and implications for bile acids activity

Sodium stearoyl-2 lactylate (SSL) lipid surfactant molecules specifically bind partially hydrolysed oat proteins in aqueous medium and significantly enhance the dispersion stability of oat cereal preparations. The proposed complexation is composition dependent and a greater understanding of the role of both oat proteins and lipid surfactant in the effect was gained with data from high performance liquid chromatography (HPLC-UV), viscometry and differential scanning microcalorimetry. The effect of the lipid surfactant on the degree of association is primarily governed by the conformational activity of oat protein molecules related to the extent of protein hydrolysed state, as well as protein unfolded and subsequent aggregated structures. SSL does not dissociate oat proteins into subunits or destroy important hydrophobic contacts already stabilising the protein molecules. Although the exact mode of association is unknown, the present study demonstrates that such interactions occur in a specific manner and suggest selectivity of oat proteins for individual fatty acids. The effect of various amounts of bile acids on SSL-oat protein interaction was also investigated, as a first attempt to investigate the role of lipid surfactant molecules in the known cholesterol-lowering action of oat cereal ingredients and to elucidate favourable conditions by which oat cereal can elicit hypocholesterolemic effects. (C) 2004 Elsevier B.V. All rights reserved.
Hydrophilic monolayer formation of adsorbed cationic starch and cationic hydroxyethyl cellulose derivates on polyester surfaces

General information
State: Published
Organisations: Swedish Institute for Fiber and Polymer Research
Authors: Roos, P. (Ekstern), Westling, Å. (Ekstern), Chronakis, I. S. (Intern)
Pages: 2247-2256
Publication date: 2004
Main Research Area: Technical/natural sciences

Publication information
Journal: Bioscience, Biotechnology and Biochemistry
Volume: 68
Issue number: 11
Original language: English
Source: orbit
Source-ID: 262213
Publication: Research - peer-review › Journal article – Annual report year: 2004

Solid-state characteristics and re-dispersible properties of powders formed by spray-drying and freeze-drying cereal dispersions of varying (1→3, 1→4) beta-glucan content

General information
State: Published
Organisations: Cereal Base Ceba AB, Swedish Institute for Fiber and Polymer Research
Authors: Chronakis, I. S. (Intern), Triantafyllou, A. Ö. (Ekstern), Öste, R. (Ekstern)
Pages: 183-193
Publication date: 2004
Main Research Area: Technical/natural sciences

Publication Information
Journal: Journal of Cereal Science
Volume: 40
ISSN (Print): 0733-5210
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.65 SJR 1.004 SNIP 1.331
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.259 SNIP 1.366 CiteScore 2.51
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.176 SNIP 1.463 CiteScore 2.59
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.008 SNIP 1.436 CiteScore 2.41
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.31 SNIP 1.611 CiteScore 2.61
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Polymer nanofibers assembled by electrospinning

General information
State: Published
Organisations: Swedish Institute for Fiber and Polymer Research
Authors: Frenot, A. (Ekstern), Chronakis, I. S. (Intern)
Pages: 64-75
Publication date: 2003
Main Research Area: Technical/natural sciences

Publication information
Journal: Current Opinion in Colloid & Interface Science
Volume: 8
Issue number: 1
ISSN (Print): 1359-0294
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 1.703 SNIP 2.065 CiteScore 5.42
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.859 SNIP 2.338 CiteScore 6.19
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.047 SNIP 2.494 CiteScore 6.09
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 2.395 SNIP 2.435 CiteScore 6.53
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Isotropic-nematic phase equilibrium and phase separation of kappa-carrageenan in aqueous salt solution: experimental and theoretical approaches

The behavior of chiral-nematic and isotropic phases of helical kappa-carrageenan in aqueous solution of sodium iodide was compared with that of the anisotropic biphasic phase that contains both these phases. On the basis of birefringence, rheology, chemical analysis, average molecular weight, and polydispersity index measurements, we derived a number of characteristic differences as well as similarities between these phases, over a range of polysaccharide concentrations obtained by the dilution of each phase. For example, we assessed the critical concentration of an isotropic-anisotropic transition (C-i), the temperature of the anisotropic-isotropic phase shift during thermal heating-cooling cycles, and the viscosity changes due to the phase shift and due to the diminishing of the helical conformation. We also demonstrated how the different phases and their dilutions behave under the effect of shear and frequency of oscillation and how the viscoelastic properties vary in each phase and discussed the isotropic and anisotropic liquid crystal controlling behavior mechanisms. From a theoretical point of view, we propose to combine the wormlike chain model for semiflexible polyelectrolytes interacting via both hard-core and electrostatic repulsion to assess the concentration of isotropic-nematic transition, to assess the coexistence concentration range, and to determine the effects of charge by applying the effective diameter and a twisting effect.

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern), Ramsi, M. (Ekstern)
Pages: 793-804
Publication date: 2002
Main Research Area: Technical/natural sciences

Publication information
Journal: Biomacromolecules
Volume: 3
Issue number: 4
ISSN (Print): 1525-7797
Ratings:
 BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
Thermoreversible Gels of Hydrophobically Modified Hydroxyethyl Cellulose Cross-Linked by Amylose

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern), Egermayer, M. (Ekstern), Piculell, L. (Ekstern)
Gelation of Edible Blue-Green Algae Protein Isolate (Spirulina platensis strain pacifica)

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern)
Pages: 888-898
Publication date: 2001
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Agricultural and Food Chemistry
Volume: 49
Issue number: 2
ISSN (Print): 0021-8561
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.45 SJR 1.291 SNIP 1.344
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.236 SNIP 1.253 CiteScore 3.23
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.278 SNIP 1.421 CiteScore 3.25
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.423 SNIP 1.479 CiteScore 3.44
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.43 SNIP 1.471 CiteScore 3.2
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.384 SNIP 1.446 CiteScore 3.1
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.408 SNIP 1.392
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.317 SNIP 1.303
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.361 SNIP 1.324
Web of Science (2008): Indexed yes
Polelectrolyte-ionic surfactant interactions in aqueous solutions: effects of polymer molecular weight, surfactant architecture, and added cyclodextrin, probed by dynamic mechanical fluorescence and NMR spectroscopy

General information
State: Published
Organisations: Unknown
Authors: Alexandridis, P. (Ekstern), Chronakis, I. S. (Intern), Ahn, S. (Ekstern), Tsianou, M. (Ekstern)
Publication date: 2001

Host publication information
Title of host publication: Abstract of Papers of the American Chemical Society
Volume: 221, U322
Main Research Area: Technical/natural sciences
Conference: Abstract of Papers of the American Chemical Society, 01/01/2001
Source: orbit
Source-ID: 263686
Publication: Research - peer-review › Article in proceedings – Annual report year: 2001

Rheological Properties of Oppositely Charged Polyelectrolyte - Surfactant Mixtures: Effect of Polymer Molecular Weight and Surfactant Architecture

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern), Alexandridis, P. (Ekstern)
Pages: 5005-5018
Publication date: 2001
Main Research Area: Technical/natural sciences

Publication information
Journal: Macromolecules
Volume: 34
Issue number: 14
ISSN (Print): 0024-9297
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Biosolar Proteins from Aquatic Algae

General information
Ternary Phase diagram of surfactant Triton X - 100 / Poly (Acrylic Acis) / Water system

General Information
State: Published
Organisations: Lund University
Authors: Galatanu, A. N. (Ekstern), Chronakis, I. S. (Intern), Anghel, D. F. (Ekstern), Khan, A. (Ekstern)
Pages: 4922-4928
Publication date: 2000
Main Research Area: Technical/natural sciences

Publication information
Journal: Langmuir
Volume: 16
Issue number: 11
ISSN (Print): 0743-7463
Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.99 SJR 1.55 SNIP 1.188
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.686 SNIP 1.308 CiteScore 4.33
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.816 SNIP 1.391 CiteScore 4.59
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.895 SNIP 1.356 CiteScore 4.55
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 2.177 SNIP 1.382 CiteScore 4.37
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 2.051 SNIP 1.357 CiteScore 4.42
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.148 SNIP 1.4
Web of Science (2010): Indexed yes
The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface

The surface tension of a protein sample isolated from the blue-green algae (cyanobacteria) Spirulina platensis strain Pacifica was studied using the Wilhelmy plate method. The isolated material was characterised by determining the protein and lipid content, SDS-PAGE electrophoresis, isoelectric focusing, and visible spectroscopy. The protein is capable of reducing the interfacial tension at the aqueous/air interface already at relatively lower bulk concentrations compared to common food proteins. The surface tension of the protein preparation seems to be quite independent of pH, which indicates that electrostatic interactions are of minor importance for the interfacial behaviour. We have also separated out fractions with different interfacial properties by centrifugation. When the protein was spread at the air/aqueous interface, the pressure area isotherm somewhat resembles those recorded for lipids, with a higher collapse pressure than usually observed for proteins. The interfacial behaviour of extracted lipids confirms that remaining traces of lipids in protein powder have only a minor influence on the surface activity of Spirulina protein. The surface-active components are likely to be protein and/or protein-pigment complexes rather than individual protein molecules. (C) 2000 Elsevier Science B.V. All rights reserved.

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern), Galatanu, A. (Ekstern), Nylander, T. (Ekstern), Lindman, B. (Ekstern)
Pages: 181-192
Publication date: 2000
Main Research Area: Technical/natural sciences

Publication information
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Volume: 173
Issue number: 1-3
ISSN (Print): 0927-7757
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Viscoelastic properties of kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour

General information

State: Published
Organisations: L’Institut National de la Recherche Agronomique, Lund University
Authors: Chronakis, I. S. (Intern), Doublier, J. (Ekstern), Piculell, L. (Ekstern)
Pages: 1-14
Publication date: 2000
Main Research Area: Technical/natural sciences

Publication information

Journal: International Journal of Biological Macromolecules
Volume: 28
Conformation and association of kappa-carrageenan with Locust Bean Gum in mixture of ions - Rheology and Cryo-TEM studies

General information
State: Published
Marine Algae Proteins: a study on the extraction, thermal denaturation and functionality of Spirulina

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern), Sanchez, A. (Ekstern)
Pages: 154-166
Publication date: 1998

Host publication information
Title of host publication: Gums and Stabilisers for the Food Industry 9
Place of publication: Cambridge
Publisher: Royal Society of Chemistry
Editor: Williams, P.
Main Research Area: Technical/natural sciences
Conference: Gums and Stabilisers for the Food Industry 9, 01/01/1998
Source: orbit
Source-ID: 263687
Publication: Research - peer-review › Article in proceedings – Annual report year: 1998

Measurement of heat transfer coefficient in a thawing tunnel

General information
State: Published
Organisations: Technical University of Crete, Universidade Catolica Portuguesa, Lund University
Authors: Gekas, V. (Ekstern), Chronakis, I. S. (Intern), Escada, G. (Ekstern), Sjöholm, I. (Ekstern)
Pages: 271-278
Publication date: 1998
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Food Process Engineering
Volume: 21
Issue number: 4
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.471 SNIP 0.697 CiteScore 1.15
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.374 SNIP 0.7 CiteScore 0.97
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.424 SNIP 0.571 CiteScore 0.86
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.376 SNIP 0.76 CiteScore 0.84
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.336 SNIP 0.57 CiteScore 0.68
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.333 SNIP 0.466 CiteScore 0.71
ISI indexed (2011): ISI indexed yes
On the molecular characteristics, compositional properties and structural functional mechanisms of Maltodextrins: A Review

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern)
Pages: 599-637
Publication date: 1998
Main Research Area: Technical/natural sciences

Publication information
Journal: CRC Critical Reviews in Food Science and Nutrition
Volume: 38
Issue number: 7
Original language: English
Source: orbit
Source-ID: 262506
Publication: Research - peer-review › Journal article – Annual report year: 1998

Specific Methods for the Analysis of Identity and Purity of Functional Food Polysaccharides

General information
State: Published
Organisations: Research Center for Food and Developement, Lund University
Authors: Goycoolea, F. (Ekstern), Chronakis, I. S. (Intern)
Pages: 99-140
Publication date: 1998

Host publication information
Title of host publication: Developments in Food Science Series, 39. 'Instrumental Methods in Food and Beverage Analysis'
Place of publication: Amsterdam
Publisher: Elsevier Applied Science Publishers
Editors: Wetzel, D., Charalambous, G.
ISBN (Print): 0-444-82018-3
Organisation and association of kappa-carrageenan helices under different salt conditions

General information
State: Published
Organisations: North East Wales Institute of Higher Education, Umeå University, Lund University
Authors: Piculell, L. (Ekstern), Borgström, J. (Ekstern), Chronakis, I. S. (Intern), Quist, P. (Ekstern), Viebke, C. (Ekstern)
Pages: 141-153
Publication date: 1997
Main Research Area: Technical/natural sciences

Publication information
Journal: International Journal of Biological Macromolecules
Volume: 21
Issue number: (1-2)
ISSN (Print): 0141-8130
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.84 SJR 0.872 SNIP 1.288
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.815 SNIP 1.316 CiteScore 3.38
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.861 SNIP 1.325 CiteScore 3.13
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.849 SNIP 1.452 CiteScore 3.48
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.796 SNIP 1.313 CiteScore 2.77
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.689 SNIP 1.21 CiteScore 2.73
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.865 SNIP 1.211
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.799 SNIP 1.189
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.749 SNIP 0.98
Scopus rating (2007): SJR 0.627 SNIP 1.001
Scopus rating (2006): SJR 0.51 SNIP 0.806
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.564 SNIP 1.179
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.587 SNIP 0.929
Partially denatured trypsinized-sunflower and soya protein isolates properties

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern), Sanchez, A. (Ekstern)
Pages: 269-274
Publication date: 1997

Host publication information
Title of host publication: Plant Proteins from European Crops: Food and Non Food Applications
Place of publication: Versailles
Editors: Gueguen, J., Popineau, Y.
Edition: INRA Edition
ISBN (Print): 3-540-63291-3
Main Research Area: Technical/natural sciences
Conference: Plant Proteins from European Crops: Food and Non Food Applications, 01/01/1997
Source: orbit
Source-ID: 263692
Publication: Research - peer-review › Article in proceedings – Annual report year: 1997

Structural-Functional and Water-Holding studies of Biopolymers in Low Fat content Spreads

General information
State: Published
Organisations: Cranfield University
Authors: Chronakis, I. S. (Intern)
Pages: 36-44
Publication date: 1997
Main Research Area: Technical/natural sciences

Publication information
Journal: Food Science and Technology (LEB)
Volume: 30
Issue number: 1
Original language: English
Source: orbit
Source-ID: 262508
Publication: Research - peer-review › Journal article – Annual report year: 1997

Structural Properties of Gelatin - Pectin Gels. Effect of Ethylene Glycol

General information
State: Published
Organisations: University of York, Cranfield University
Authors: Chronakis, I. S. (Intern), Kasapis, S. (Ekstern), Abeysekera, R. (Ekstern)
Pages: 271-279
Publication date: 1997
Main Research Area: Technical/natural sciences
Gelation and Phase Separation in Maltodextrin - Caseinate systems

General information
State: Published
Organisations: Cranfield University
Authors: Manoj, P. (Ekstern), Kasapis, S. (Ekstern), Chronakis, I. S. (Intern)
Pages: 407-420
Publication date: 1996
Main Research Area: Technical/natural sciences

Publication information
Journal: Food Hydrocolloids
Volume: 11
Issue number: 3
Original language: English
Source: orbit
Source-ID: 262509
Publication: Research - peer-review › Journal article – Annual report year: 1997

Ratings:
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): SJR 2.043 SNIP 2.041 CiteScore 5.1
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.846 SNIP 1.966 CiteScore 4.53
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.251 SNIP 2.564 CiteScore 5.21
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 2.1 SNIP 2.292 CiteScore 4.81
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.866 SNIP 2.086 CiteScore 3.69
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.615 SNIP 1.921 CiteScore 3.57
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.743 SNIP 1.513
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.728 SNIP 1.781
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.484 SNIP 1.654
Scopus rating (2007): SJR 1.563 SNIP 1.726
Scopus rating (2006): SJR 1.267 SNIP 1.634
Scopus rating (2005): SJR 1.007 SNIP 1.381
Network formation and viscoelastic properties of commercial soy protein dispersions: effect of heat treatments, pH and calcium ions

General information
State: Published
Organisations: Cranfield University
Authors: Chronakis, I. S. (Intern)
Pages: 123-134
Publication date: 1996
Main Research Area: Technical/natural sciences

Publication information
Journal: Food Research International
Volume: 29
Issue number: 2
ISSN (Print): 0963-9969
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.87 SJR 1.589 SNIP 1.682
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.518 SNIP 1.641 CiteScore 3.66
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.496 SNIP 1.761 CiteScore 3.52
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.522 SNIP 1.818 CiteScore 3.68
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.597 SNIP 1.774 CiteScore 3.31
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.515 SNIP 1.701 CiteScore 3.42
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.356 SNIP 1.434
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Rheology of kappa-carrageenan in mixtures of sodium & cesium iodide: Two types of gels

Recent studies on dilute solutions (Borgström et al. (1996), Int. J. Biol. Macromol. 18, 223) have shown that kappa-carrageenan helices associate into superhelical rigid rods in mixed 0.1 M aqueous solutions of NaI and CsI above a critical mole fraction (x(Cs)=0.4) of Cs. This work concerns the temperature-dependent rheology of more concentrated systems in mixed and pure solutions of the same salts. Gels with low moduli were even found in NaI alone, although this salt is known to impede the gelation of kappa-carrageenan, but only above 0.9% (w/w) of carrageenan. These gels were reminiscent of iota-carrageenan gels in two respects: the (low) magnitude of the shear storage modulus (G'), and the absence of hysteresis in the sol-gel transition. On the other hand, both the threshold concentration for gelation and the ratio between the loss and storage moduli were substantially higher for the kappa-carrageenan gels in NaI. In mixed solutions of CsI and NaI, two types of kappa-carrageenan gels could be distinguished, depending on the cesium content. The transition occurred at x(Cs) = 0.4, as in the previous studies on dilute solutions. Below x(Cs)=0.4, the gels were similar to those in NaI alone. Above x(Cs)=0.4, the gels were similar to 'conventional' kappa-carrageenan gels, formed in salts such as KCl: a pronounced thermal hysteresis appeared in the sol-gel transition, the gels showed tendencies for syneresis, and G' increased dramatically with increasing cesium content. (C) 1997 Elsevier Science Ltd.

General information
State: Published
Organisations: Lund University
Authors: Chronakis, I. S. (Intern), Piculell, L. (Ekstern), Borgström, J. (Ekstern)
Pages: 215-225
Publication date: 1996
Main Research Area: Technical/natural sciences

Publication information
Journal: Carbohydrate Polymers
Volume: 31
Issue number: 4
ISSN (Print): 0144-8617
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.15 SJR 1.404 SNIP 1.745
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.46 SNIP 1.842 CiteScore 4.86
Web of Science (2015): Indexed yes
Scientific and Technological aspects of Polymer incompatibility in mixed Biopolymer systems

General information
State: Published
Organisations: Unknown
Authors: Kasapis, S. (Ekstem), Alevisopoulos, S. (Ekstem), Abeysekera, R. (Ekstem), Manoj, P. (Ekstem), Chronakis, I. S. (Intern), Papageorgiou, M. (Ekstem)
Pages: 195-206
Publication date: 1996

Host publication information
Title of host publication: Gums and Stabilisers for the Food Industry 8
Place of publication: Oxford
Publisher: IRL Press
Editors: Phillips, G., Williams, P., Wedlock, D.
Main Research Area: Technical/natural sciences
Small deformation rheological properties of single and mixed Maltodextrin – Milk protein systems

Small deformation dynamic oscillation was used to investigate the structural behaviour of conformationally dissimilar maltodextrin and milk protein macro-molecules in a mixture, with the view of identifying the state of phase separation and the pattern of solvent distribution between the two constituent phases. The enthalpic nature of the maltodextrin network produced a sigmoidal transition in the development of storage modulus (G') during cooling and substantial thermal hysteresis upon heating of the gel. By contrast, the entropically-driven build up of structure in milk protein samples yielded linear and overlapping cooling and heating scans of G' with networks reverting into solutions at relatively low temperatures. These differences in the viscoelastic functions of the two polymers in combination with theoretical analysis (isostress-isostrain models, Kerner equation) have documented the reinforcing effect of strong and spherical maltodextrin inclusions on the weaker and continuous milk protein phase. However, at concentrations of maltodextrin beyond the phase inversion point, the binary assembly comprises a strong and continuous maltodextrin network surrounding the weaker milk protein inclusions. Finally, the sharp change in the pattern of water partition between the two polymeric components, as a result of phase inversion in the system, was rationalised on the basis of kinetically-influenced co-gels comprising phase separated networks which are trapped away from the state of thermodynamic equilibrium. Copyright (C) 1996 Published by Elsevier Science Ltd.

General information
State: Published
Organisations: Cranfield University
Authors: Chronakis, I. S. (Intern), Kasapis, I. (Ekstern), Richardson, R. (Ekstern)
Pages: 137-148
Publication date: 1996
Main Research Area: Technical/natural sciences

Publication information
Journal: Carbohydrate Polymers
Volume: 29
Issue number: 2
ISSN (Print): 0144-8617
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.15 SJR 1.404 SNIP 1.745
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.46 SNIP 1.842 CiteScore 4.86
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.584 SNIP 1.969 CiteScore 4.69
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.346 SNIP 1.967 CiteScore 4.39
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.409 SNIP 2.045 CiteScore 3.93
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.287 SNIP 1.991 CiteScore 4.08
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Applications of Biopolymers - Theory and Practice

General information
State: Published
Organisations: Cranfield University
Authors: Chronakis, I. S. (Intern), Kasapis, S. (Ekstern)
Pages: 75-110
Publication date: 1995

Host publication information
Title of host publication: Food Flavors: Generation, Analysis and Process Influence
Place of publication: Amsterdam
Editor: Charalambous, G.
ISBN (Print): 0-444-82013-2
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 263672
Publication: Research - peer-review › Book chapter – Annual report year: 1995

A Recent Advance in the Application of Blending Laws in Mixed Biopolymer Systems

General information
State: Published
Organisations: Cranfield University
Authors: Chronakis, I. S. (Intern), Kasapis, S. (Ekstern)
Pages: 99-118
Publication date: 1995
Main Research Area: Technical/natural sciences

Publication information
Journal: International Journal of Polymer Analysis and Characterization
Volume: 1
ISSN (Print): 1023-666X
Ratings:
BFI (2017): BFI-level 1
A Rheological Study of the Application of Carbohydrate-Protein Incompatibility to the Development of Low Fat Commercial Spreads

The small and large deformation properties of commercial low fat spreads and traditional full fat products have been investigated in order to develop a background understanding of the changes in viscoelastic properties and the structural organisation occurring as a result of addition of biopolymers to the aqueous phase of low fat dispersions. Parameters have been derived from compression analysis, dynamic oscillation (frequency, strain and temperature sweeps) and creep compliance testing.

It seems that the direct replacement of fat with a biopolymer-structured aqueous phase does not imitate the plastic rheology of butter and margarine. Thus, the ratio of plastic to maximum stress (σp/σm) of butter and margarine is substantially higher (0.96 - 1.0) than the ratio of inflectional to maximum stress (σi/σm) of commercial low fat spreads with a strong, gel-like character (up to 0.83). Additionally, some commercial embodiments with reduced amounts of structural components have stress-strain profiles resembling those of viscous solutions instead of a plastic product. Dynamic oscillatory measurements have characterised the mechanical properties of water-continuous low fat spreads. Dispersions reproduced the mechanical profile of three-dimensional biopolymer gels with a high elastic component (tan δ approximate to 0.04) and a substantial linear response to increasing amplitude of oscillation (up to 10% deformation). Products comprising hydrolysed starch as one of the functional ingredients show long melting profiles upon heating, which contrast strongly with the 'melt in the mouth' properties of butter. In accordance with the above, butter requires lower initial strain to exhibit negligible recovery of shape after the removal of stress, than do commercial low fat spreads with a pronounced elastic element, during a creep compliance experiment. Copyright (C) 1996 Elsevier Science Ltd.
Characterisation of a Commercial Soy Isolate by Physical Techniques

General information
State: Published
Organisations: Aristotle University of Thessaloniki, Cranfield University
Authors: Chronakis, I. S. (Intern), Kasapis, S. (Ekstern), Richardson, R. (Ekstern), Doxastakis, G. (Ekstern)
Pages: 371-389
Publication date: 1995
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Textural Studies
Volume: 26
Issue number: 4
Original language: English
Source: orbit
Source-ID: 262575
Publication: Research - peer-review › Journal article – Annual report year: 1995

Preparation and Analysis of Water Continuous Very Low Fat Spreads

General information
State: Published
Organisations: Cranfield University
Authors: Chronakis, I. S. (Intern), Kasapis, S. (Ekstern)
Pages: 488-494
Publication date: 1995
Main Research Area: Technical/natural sciences

Publication information
Journal: Food Science & Technology
Volume: 28
Issue number: 5
ISSN (Print): 1475-3324
Ratings:
Scopus rating (2016): SJR 0.11 CiteScore 0.06
Scopus rating (2015): SJR 0.109 SNIP 0 CiteScore 0.06
Scopus rating (2014): SJR 0.108 SNIP 0.57 CiteScore 0.09
Scopus rating (2013): SJR 0.116 SNIP 0.177 CiteScore 0.09
ISI indexed (2013): ISI indexed no
Scopus rating (2012): SJR 0.104 SNIP 0.042 CiteScore 0.04
ISI indexed (2012): ISI indexed no
Scopus rating (2011): SJR 0.12 SNIP 0.064 CiteScore 0.06
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.122 SNIP 0.072
Scopus rating (2009): SJR 0.117 SNIP 0.019
Scopus rating (2008): SJR 0.12 SNIP 0.129
Scopus rating (2007): SJR 0.112 SNIP 0.007
Scopus rating (2006): SJR 0.111 SNIP 0.214
Scopus rating (2005): SJR 0.124 SNIP 0.028
Original language: English
Source: orbit
Source-ID: 262569
Publication: Research - peer-review › Journal article – Annual report year: 1995

Structural Properties of single and mixed Milk / Soya Protein Systems
Projects:

Experimental project in physics and nanotechnology: Cryo SEM Characterization of Food NMS Containing PUFA
Center for Electron Nanoscopy
DTU Danchip
National Food Institute
Research Group for Bioactives – Analysis and Application
Research Group for Nano-Bio Science

Period: 09/09/2016 → 01/12/2016
Number of participants: 5
Acronym: 33525

Project participant:
Haaning, Katrine (Ekstern)

Supervisor:
García Moreno, Pedro Jesús (Intern)
Jacobsen, Charlotte (Intern)
Chronakis, Ioannis S. (Intern)

Main Supervisor:
Mateiu, Ramona Valentina (Intern)

Development of omega-3 nanodelivery systems using electrospinning processing

Functional foods containing omega-3 lipids, which have approved health claims by EFSA, have resulted in one of the fastest-growing food product categories in Europe. However, to successfully develop foods enriched with omega-3 PUFA, lipid oxidation of these highly unsaturated fatty acids must be prevented in order to avoid both the loss of nutritional value and the formation of unpleasant off-flavors. Omega-3 PUFA can be added to foods as neat oils or as a “delivery system” such as microencapsulated oil powders and oil-in-water emulsions. Nevertheless, delivery of omega-3 lipids in the form of emulsions reduces the oxidative stability of omega-3 PUFA in some products. Furthermore, microencapsulates are less suitable for liquid or semi-liquid foods than emulsified omega-3 oils due to handling/mixing issues. Therefore, the development of alternative omega-3 PUFA delivery systems, which are easy to disperse and which will lead to improved oxidative stability of omega-3 enriched food products, is urgently required. One of the more promising delivery systems can be functional nanomicrostructures obtained by electrospinning technology, which is possible to up-scale.

In light of the above, the aim of this research project is to develop advanced omega-3 delivery systems such as electrospun nano-microstructures.

To this end, the specific objectives are:

1) Development of physically and oxidatively stable nano-microstructures with omega-3 PUFA and natural antioxidants using electrospinning processing.

2) Production of food enriched with the nano-microstructures having appropriate structural-functional properties and being oxidatively stable.

The success of the research proposed will lead to an important advance in the protection of omega-3 PUFA against oxidation when incorporated into food. Thus, the knowledge generated by this study has the potential to being exploited by companies devoted to the production of functional foods containing omega-3 lipids.

National Food Institute
Research Group for Bioactives – Analysis and Application
Research Group for Nano-Bio Science
Division of Industrial Food Research
Period: 24/08/2015 → 24/08/2017
Number of participants: 3
Acronym: ELECTRONANOMEGA

Project participant:
García Moreno, Pedro Jesús (Intern)
Supervisor:
Chronakis, Ioannis S. (Intern)
Main Supervisor:
Jacobsen, Charlotte (Intern)

Relations
Related projects:
Experimental project in physics and nanotechnology: Cryo SEM Characterization of Food NMS Containing PUFA
Biological Sample Preparation for Electron Microscopy
Publications:
Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing
Oxidative stability of pullulan nanofibers loaded with fish oil: effect of oil content and antioxidants addition
Protein-polysaccharide Mixtures as Wall Material in Fish Oil-loaded Nano-microcapsules Obtained by Electrospaying
Oxidative stability of pullulan electrospun fibers containing fish oil
Oxidative stability of electrospun nanofibers loaded with fish oil
Production of omega-3 nanodelivery systems by emulsion electrospinning
Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability
Oxidative Stability of Nano-Microstructures containing fish oil

Nanodelivery systems for urine bladder tissue engineering applications
Grant giver: The Danish Council for Independent Research | Technology and Production Sciences
Instrument: DFF-Individuelt postdocstipendium med Sapere Aude 1

Research Group for Nano-Bio Science
Technical University of Denmark
Period: 01/03/2015 → 31/08/2017
Number of participants: 4
Project participant:
Fossum, Magdalena (Ekstern)
Hilborn, Jons (Ekstern)
Project Manager, academic:
Chronakis, Ioannis S. (Intern)
Project applicant:
Ajalloueian, Fatemeh (Intern)

Relations
Parent project:
Functional Biopolymer Nanostructures for Bioengineering Applications

Functional Biopolymer Nanostructures for Bioengineering Applications
National Food Institute
Research Group for Nano-Bio Science
Period: 01/02/2015 → 31/01/2018
Number of participants: 3
Project participant:
Shekarforoush, Elhamalsadat (Intern)
Supervisor:
Mendes, Ana Carina Loureiro (Intern)
Main Supervisor:
Chronakis, Ioannis S. (Intern)

Relations
Related projects:
NanoBioEngineering of BioInspired BioPolymers

Functional Biopolymer Nanostructures for Bioengineering Applications
National Food Institute
Period: 01/02/2015 → 28/02/2018
Number of participants: 3
Phd Student:
Shekarforoush, Elhamalsadat (Intern)
Supervisor:
Mendes, Ana Carina Loureiro (Intern)
Main Supervisor:
Chronakis, Ioannis S. (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Privatist
Project: PhD

An improved physical understanding of the production of extruded fish feed will enable an optimized raw material utilization (ImProFeed)
National Food Institute
Period: 01/08/2014 → 31/07/2017
Number of participants: 8
Phd Student:
Dethlefsen, Markus Wied (Intern)
Supervisor:
Feyissa, Aberham Hailu (Intern)
Hjermitslev, Niels Harthøj (Ekstern)
Nielsen, Michael Engelbrecht (Intern)
Main Supervisor:
Jørgensen, Bo Munk (Intern)
Examiner:
Chronakis, Ioannis S. (Intern)
Colovic, Radmilo (Ekstern)
Kristensen, Jakob Broberg (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Industrial PhD
Project: PhD

Photo-catalytic nano-membranes for waste water treatment system in the dairy industry
In Denmark and in most other countries, the dairy industry has grown in size and number of companies. Denmark is among the top 5 nations in the export of dairy products.

Dairy Industries produce wastewater during pasteurization and homogenization of milk, and during the production of dairy products (butter, cream, cheese, etc). The wastewater makes the dairy industry one of the most polluting industries, not only because of the volume of wastewater generated, but also by virtue of its wastewater character. On average 2.5 liters of wastewater is generated per liter of milk produced, but the amount can be as high as 10 liters of water per liter of milk.

The purpose of this project is to develop innovative cost-effective membranes, consisting of a photocatalytic active material for use in the treatment process of wastewater from the dairy industry. These nano-membranes will only use a photoactive semiconductor and a suitable light source for the purification process, and thus will not form other metabolites to the environment than CO2 and H2O.
NanoBioEngineering of BioInspired BioPolymers

Chitosans, chitin-derived polysaccharides varying in their degree of polymerisation (DP), degree of acetylation (DA), and pattern of acetylation (PA), have been considered one of the most versatile and promising biopolymers due to its set of remarkable physico-chemical properties along with a wide range of biological functionalities. However their economic potential is far from being exploited due to i) problems with reproducibility of biological activities as today’s chitosans are rather poorly defined mixtures, and ii) the threat of allergen contamination from their typical animal origin. The Nano3Bio project will overcome these hurdles to market entry and penetration by producing in vitro and in vivo defined oligo- and polymers with controlled, tailor-made DP, DA, and PA.

DTU contribution: The bioinspired chitosans will be formulated into nanostructures such as nanogels, nanofibers, nanoparticles to impart novel properties. Further those will be bench-marked against their conventional counterparts in a variety of cell based assays and routine industrial tests for biomedical markets.

Main targets: Anti-Bacterial, Anti-Fungal, Anti-Tumor
Wound-Healing
Drug and Gene delivery
Food and other Bioengineering applications
Centre National de la Recherche Scientifique
Technical University of Denmark
Ruprecht-Karls Universität
University of Hyderabad
European Union Reference Laboratory
Cosphatec GmbH
Bio Base Europe Pilot Plant
Greenaltech SL
Greendelta GmbH
2-O LCA Consultants APS
ARTES Biotechnology GmbH
Lyon Ingenierie Projects
CARE SENSE Consulting
Beemo
Heppe Medical Chitosan GmbH
Enantia SL
Perseus bvba
Period: 01/12/2013 → 31/12/2017
Number of participants: 2
Chitosan, Biotechnology, Biomaterials
Acronym: Nano3Bio
Project participant:
Chronakis, Ioannis S. (Intern)
Mendes, Ana Carina Loureiro (Intern)

Financing sources
Source: EU research programme (public)
Name of research programme: FP7 EU
Amount: 491,111.00 Euro

Relations
Activities:
COST MP1206- Electrospinning of Chitosan
International Conference of the European Chitin Society
Nanotec2016
The Fiber Society 2016
Documents:
Press Release Kick-off Nano3Bio
Project

Characterisation of the tribological and rheological properties between mucin/mucus and viscoelastic food systems
National Food Institute
Period: 01/05/2013 → 30/08/2017
Number of participants: 7
Phd Student:
Celebioglu, Hilal Yilmaz (Intern)
Supervisor:
Lee, Seunghwan (Intern)
Lee, Seunghwan (Intern)
Main Supervisor:
Chronakis, Ioannis S. (Intern)
Functional nano-microstructures for food and bioengineering applications

National Food Institute
Period: 01/03/2012 → 02/07/2015
Number of participants: 3
Phd Student:
Jørgensen, Lars (Intern)
Supervisor:
Jessen, Flemming (Intern)
Main Supervisor:
Chronakis, Ioannis S. (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Stipendie fra udlandet
Project: PhD

Development and characterization of nano-microstructures as carrier for bioactive compounds

National Food Institute
Period: 01/10/2011 → 02/09/2015
Number of participants: 6
Phd Student:
Boutrup Stephansen, Karen (Intern)
Supervisor:
Chronakis, Ioannis S. (Intern)
Main Supervisor:
Jessen, Flemming (Intern)
Examiner:
Sloth, Jens Jørgen (Intern)
Fojan, Peter (Ekstern)
Sarmento, Bruno (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Forskningsrådsfinansiering
Project: PhD

Biosurface and biotribological properties of mucins and mucus gels

Department of Mechanical Engineering
Period: 01/08/2011 → 30/09/2014
Number of participants: 5
Phd Student:
Madsen, Jan Busk (Intern)
Main Supervisor:
Lee, Seunghwan (Intern)
Examiner:
Chronakis, Ioannis S. (Intern)
Kocherbitov, Vitaly (Ekstern)
Zappone, Bruno (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Anden EU-finansiering
Project: PhD

Functional Electrospun Nanostructures and Microstructures for Food and Bioengineering Applications
The objectives of this project is to generate the scientific and technological basis to: (i) develop new nano-microcarrier systems for bioactive compounds using electrospun nano-microstructures for their immobilization, (ii) develop new nano-microdelivery systems utilizing enzyme functionality and molecular imprinted polymers for controlled delivery/release of bioactives, (iii) study the structural and functional properties of nano-microstructures (NMS) as novel components of food and bioengineered products, (iv) evaluate their bioavailability and degradation/digestion in-vitro and in-vivo.
The overall aim is to create new functional systems that have a potential usage in foods/healthy foods, as nutritional supplements, as pharmaceutical products and for a range of other bioengineering applications. The project’s ambition is also to contribute to research training in research institutes and industrial companies as well as education of industrial employees. We expect that the obtained knowledge will strengthen the Danish industry’s potential to emerging nanomicrotechnologies and technologies of bioactives.

National Food Institute
Division of Industrial Food Research
Department of Chemical and Biochemical Engineering
Center for BioProcess Engineering
Period: 01/05/2011 → 31/10/2015
Number of participants: 10
Acronym: FENAMI
Project participant:
Meyer, Anne S. (Intern)
Qvortrup, Klaus (Ekstern)
Ye, Lei (Ekstern)
Goycoolea, F.M. (Ekstern)
Nielsen, Kent Albin (Ekstern)
Jessen, Flemming (Intern)
Boutrup Stephansen, Karen (Intern)
Jørgensen, Lars (Intern)
Mendes, Ana Carina Loureiro (Intern)
Project Manager, academic:
Chronakis, Ioannis S. (Intern)

Financing sources
Source: Public research council
Name of research programme: Danish Research Council/Programme Commission for “Sundhed, Fødevarer og Velfærd”
Amount: 14,866,637.00 Danish Kroner

Relations
Activities:
FENAMI Project Course: Advances in Bioinspired Nanomaterials and Approaches in Life Sciences

Process development: Enzymatic upgrading of pectin from sugar beet pulp
Department of Chemical and Biochemical Engineering
Period: 01/06/2009 → 04/09/2013
Number of participants: 6
Phd Student:
Ahmadi Gavlighi, Hassan (Intern)
Supervisor:
Meyer, Anne S. (Intern)
Main Supervisor:
Mikkelsen, Jørn Dalgaard (Intern)
Examiner:
Chronakis, Ioannis S. (Intern)
Bergenståhl, Björn (Ekstern)
Juul, Anne Grete (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Stipendie fra udlandet
Project: PhD