Henri Jansen - DTU Orbit (01/11/2017)

Henri Jansen

Research areas
Applied physics and engineering in general. Present research covers plasma etching and physics, accurate nanofabrication, design and fabrication of 3 dimensional (3D) nanodevices, nanoporous membranes, Knudsen transport, clean water and sustainability, energy harvesting, black silicon for super-hydrophobicity and solar heat conversion, and X-ray and gravitational sensors for space applications. Previous research covers Communication, Radar and Sonar technology, MEMS fabrication, RF MEMS, micropropulsion for deep space, theory and application of microfluidics, capillary action, cell trapping, microscopic gas transport, hydrogen separation, edge and corner lithography and fractal fabrication.

Organisations
Professor, DTU Danchip
10/03/2015 → present
henrija@dtu.dk
VIP

Publications:

Microfabrication of gratings for X-ray Imaging

General information
State: Published
Organisations: DTU Danchip, Department of Micro- and Nanotechnology, Silicon Microtechnology, Department of Physics, Neutrons and X-rays for Materials Physics, Technical University of Denmark
Authors: Silvestre, C. (Intern), Christiansen, E. D. (Ekstern), Zeng, Y. (Ekstern), Kehres, J. (Intern), Jansen, H. (Intern), Hansen, O. (Intern)
Publication date: 2017
Main Research Area: Technical/natural sciences
Electronic versions:
Untitled.pdf
Source: PublicationPreSubmission
Source-ID: 137622501
Publication: Research - peer-review › Poster – Annual report year: 2017

Microfabrication of X-Ray grating for Talbot Interferometry

General information
State: Published
Organisations: DTU Danchip, Department of Micro- and Nanotechnology, Silicon Microtechnology
Authors: Silvestre, C. (Intern), Chang, B. (Intern), Jansen, H. (Intern), Hansen, O. (Intern)
Publication date: 2017
Main Research Area: Technical/natural sciences
X-ray gratings, Dry etching, Talbot interferometer
Electronic versions:
Untitled_2.pdf
Publication: Research - peer-review › Conference abstract for conference – Annual report year: 2017

Design and fabrication of in-plane AFM probes with sharp silicon nitride tips based on refilling of anisotropically etched silicon moulds
In this paper a micromachining method for batch fabrication of in-plane atomic force microscope (AFM) probes that consist of a sharp silicon nitride tip on a monocrystalline silicon cantilever is presented. The tips are realized by conformal deposition of silicon nitride inside an anisotropically etched cavity inside a silicon wafer. The best measured radius of the sharp tips was 8 nm. Our fabrication method is fully compatible with silicon-on-insulator (SOI) micromachining, allowing a straightforward monolithic integration of the AFM probes with high-aspect-ratio monocrystalline silicon MEMS. The fabrication method allows for lateral cantilevers, which oscillate in the plane of the fabrication wafer. This allows for simple integration of micromechanical transducers, opening the way towards dedicated probes for high speed AFMs. To demonstrate the innovation potential of this method, three different probe designs were fabricated: a plane passive AFM probe, a probe with integrated electrostatic actuator, and a probe which allows scanning on vertical sidewalls. The passive
probes were successfully tested in a commercial AFM set-up. Correct operation of the probes with integrated actuator was demonstrated by actuation under a laser vibrometer.

General information

State: Published
Organisations: University of Twente
Authors: Geerlings, J. (Ekstern), Sarajlic, E. (Ekstern), Berenschot, J. W. (Ekstern), Siekman, M. H. (Ekstern), Jansen, H. V. (Intern), Abelmann, L. (Ekstern), Tas, N. R. (Ekstern)
Number of pages: 16
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication information

Journal: Journal of Micromechanics and Microengineering
Volume: 24
Issue number: 10
Article number: 105013
ISSN (Print): 0960-1317
Ratings:
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.74 SJR 0.595 SNIP 1.017
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.64 SNIP 1.211 CiteScore 1.96
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.725 SNIP 1.224 CiteScore 1.84
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.611 SNIP 1.055 CiteScore 1.74
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.856 SNIP 1.402 CiteScore 1.92
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.038 SNIP 1.437 CiteScore 2.43
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.019 SNIP 1.634
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.17 SNIP 1.517
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.27 SNIP 1.634
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.437 SNIP 1.837
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.341 SNIP 2.118
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.28 SNIP 2.116
Web of Science (2005): Indexed yes
Projects:

Smooth advanced silicon NEMS devices

DTU Danchip
Period: 01/12/2017 → …
Number of participants: 1
Project participant:
Jansen, Henri (Intern)
Project

Microfabrication Technology for X-ray Optical Elements

Department of Micro- and Nanotechnology
Period: 01/03/2017 → 29/02/2020
Number of participants: 3
Phd Student:
Silvestre, Chantal (Intern)
Supervisor:
Jansen, Henri (Intern)
Main Supervisor:
Hansen, Ole (Intern)

Financing sources

Source: Internal funding (public)
Name of research programme: Samfinansieret - Andet
Project: PhD