Multivariate statistical analysis of organ weight in toxicity studies

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling, Mathematical Statistics
Authors: Andersen, H. (Intern), Spliid, H. (Intern), Larsen, S. (Ekstern), Christensen, N. D. (Ekstern)
Pages: 67-77
Publication date: 1999
Main Research Area: Technical/natural sciences

Publication information
Journal: Toxicology
Volume: 136
ISSN (Print): 0300-483X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 1.397 SNIP 1.218 CiteScore 3.91
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.343 SNIP 1.27 CiteScore 3.7
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.21 SNIP 1.257 CiteScore 3.39
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.2 SNIP 1.435 CiteScore 3.9
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.268 SNIP 1.373 CiteScore 3.79
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Statistical models for standardized preclinical studies

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Andersen, H. (Intern)
Publication date: 1999

Publication information
Original language: English
Series: IMM-PHD-1999-67
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 200759
Publication: Research › Ph.D. thesis – Annual report year: 1999

Technology management of the development of statistical methods and models for standardized preclinical studies.

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Andersen, H. (Intern)
Number of pages: 30
Continuous ecotoxicological data evaluated relative to a control response

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling, Mathematical Statistics, Department of Environmental Engineering, Department of Environmental Science and Engineering
Authors: Andersen, J. S. (Intern), Holst, H. (Intern), Spliid, H. (Intern), Andersen, H. (Intern), Baun, A. (Intern), Nyholm, N. (Intern)
Pages: 405-420
Publication date: 1998
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Agricultural, Biological, and Environmental Statistics
Volume: 3
Issue number: 4
ISSN (Print): 1085-7117
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): SJR 0.802 SNIP 0.83 CiteScore 1
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.467 SNIP 0.629 CiteScore 0.81
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.694 SNIP 0.85 CiteScore 1.18
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.68 SNIP 0.54 CiteScore 0.97
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.645 SNIP 0.759 CiteScore 1.38
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.603 SNIP 0.908 CiteScore 0.88
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.67 SNIP 0.748
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.514 SNIP 0.831
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.768 SNIP 0.895
Scopus rating (2007): SJR 0.79 SNIP 1.184
Scopus rating (2006): SJR 0.78 SNIP 1.122
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.582 SNIP 0.892
Scopus rating (2004): SJR 0.543 SNIP 0.642
Scopus rating (2003): SJR 0.333 SNIP 0.734
Projects:

Consistency in Statistical Toxicity Testing
Ph.D. Project no. 1214 Financier: ATV Ph.D. Student: Helle Andersen Development of models for consistent statistical methods in toxicity testing in pre-clinical experiments in the pharmaceutical industry. The work is aiming at the construction of a knowledge database containing information about selection of mathematical models and for example possible transformations, outlier tests and other statistical procedures for given types of studies.

Department of Informatics and Mathematical Modeling
Period: 01/11/1996 → 30/10/1999
Number of participants: 2
Project participant:
Andersen, Helle (Intern)
Project Manager, organisational:
Spliid, Henrik (Intern)

Statistical methods and models for standardized toxicological and safety pharmacological studies.
Project no.: 1214 Ph.D. project: ATV - Novo Nordisk A/S Ph.D. student: Helle Andersen During the last couple of years, a group of scientists at Novo Nordisk have developed a decision tree for the statistical analysis of toxicity data from studies with animals. Unfortunately the decision tree has been found to lead to inconsistencies as variables are often analyzed differently from study to study. Furthermore, it does not contain a test battery for the analysis of the dose-response relationship, or recommendations for the analysis of repeated measurements. An other shortcoming of the decision tree is that it does not contain recommendations for the statistical analysis of safety pharmacology data. My project has been initiated to overcome these problems. The purpose of the statistical work in the project is to evaluate existing basic experimental designs and matching statistical models in toxicological studies where statistical methodology has already been applied. The purpose of the statistical work is to establish a "knowledge data base" where experimental designs and empirical knowledge about biological variables determine the statistical model, and hence the statistical analysis. There is some empirical knowledge in the following areas (among others): - Transformation of data - Distribution of variables - Statistical tests for outliers - Statistical tests for homogeneity of variance - Statistical analysis of single and correlated variables - Statistical considerations of repeated measurements on individual animals In this way, variables will be analyzed identically from study to study, i.e. the statistical method will be identical for the same variable independently of study. But at the same time, statistical methods will be established to spot abnormalities (outliers) which could indicate some (important) adverse biological response.

Department of Informatics and Mathematical Modeling
Period: 01/11/1996 → …
Number of participants: 1
Project Manager, organisational:
Andersen, Helle (Intern)

Financing sources
Source: Unknown
Name of research programme: Ukendt
Amount: 36,175.00 Danish Kroner

Statistiske metoder og modeller til analyse
Department of Informatics and Mathematical Modeling
Period: 01/11/1996 → …
Number of participants: 2
PhD Student:
Andersen, Helle (Intern)
Main Supervisor:
Spliid, Henrik (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Erhvervsforskerordningen
Project: PhD