Hybrid Si-on-chip Lasers with Nano Structures

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices
Authors: Chung, I. (Intern), Park, G. C. (Intern), Taghizadeh, A. (Intern), Mørk, J. (Intern), Learkthanakhachon, S. (Intern), Semenova, E. (Intern)
Number of pages: 1
Publication date: 2017

Host publication information
Title of host publication: Proceedings of the 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
Publisher: IEEE
Main Research Area: Technical/natural sciences
Conference: The European Conference on Lasers and Electro-Optics, CLEO_Europe 2017, Munich, Germany, 25/06/2017 - 25/06/2017
DOIs: 10.1109/CLEOE-EQEC.2017.8086365
Source: PublicationPreSubmission
Source-ID: 141915792
Publication: Research - peer-review › Conference abstract in proceedings – Annual report year: 2017

Hybrid grating reflectors: Origin of ultrabroad stopband

Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Authors: Park, G. C. (Intern), Taghizadeh, A. (Intern), Chung, I. (Intern)
Number of pages: 5
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Volume: 108
Issue number: 14
Article number: 141108
Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been investigated and the mechanisms leading to these properties are discussed. A HG reflector sample integrating a III-V cap layer with InGaAlAs quantum wells onto a Si grating has been fabricated and its reflection property has been characterized. The HG-based lasers have a promising prospect for silicon photonics light source or high-speed laser applications.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Authors: Chung, I. (Intern), Taghizadeh, A. (Intern), Park, G. C. (Intern)
Number of pages: 16
Publication date: 2016

Silicon photonics, HCG, Subwavelength grating, Hybrid, Optical interconnects, Optical interconnection

Hybrid III-V/SOI resonant cavity enhanced photodetector

A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid RCE-PD sample has been fabricated by heterogeneously integrating an InP-based material onto a silicon-on-insulator wafer and has been characterized, which shows a clear enhancement in photo-current at the designed wavelength. This indicates that the HG reflector provides a field enhancement sufficient for RCE-PD operation. In addition, a capability of feasibly selecting the detection wavelength during fabrication as well as a possibility of realizing silicon-integrated bidirectional transceivers are discussed.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Metro-Access and Short Range Systems, Nanophotonic Devices, Centre of Excellence for Silicon Photonics for Optical Communications
Authors: Learkhanakachanon, S. (Intern), Taghizadeh, A. (Intern), Park, G. C. (Intern), Yvind, K. (Intern), Chung, I. (Intern)
Pages: 16512-16519
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Optics Express
Volume: 24
ISSN (Print): 1094-4087

Ratings:

BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.74 SJR 1.519 SNIP 1.567
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.48 SJR 1.532 SNIP 1.544
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.91 SNIP 1.674 CiteScore 3.78
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.313 SNIP 2.124 CiteScore 4.18
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 2.337 SNIP 2.196 CiteScore 4.38
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 2.562 SNIP 2.108 CiteScore 3.85
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 2.58 SNIP 2.572 CiteScore 4.04
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.906 SNIP 2.428
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.039 SNIP 2.679
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.204 SNIP 2.423
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.284 SNIP 2.11
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 3.313 SNIP 2.336
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.819 SNIP 2.472
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.669 SNIP 2.217
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.745 SNIP 1.748
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.496 SNIP 1.42
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.98 SNIP 0.761
Hybrid III-V/SOI Resonant Cavity Photodetector
A hybrid III-V/SOI resonant cavity photodetector has been demonstrated, which comprises an InP grating reflector and a Si grating reflector. It can selectively detect an incident light with 1.54-µm wavelength and TM polarization.

Ultrabroadband Hybrid III-V/SOI Grating Reflector for On-chip Lasers
We report on a new type of III-V/SOI grating reflector with a broad stopband of 350 nm. This reflector has promising prospects for applications in high-speed III-V/SOI vertical cavity lasers with an improved heat dissipation capability.

Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics
For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating energy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG)
mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequencies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA(1/2), which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or a very small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.

General information

State: Published

Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, High-Speed Optical Communication, Centre of Excellence for Silicon Photonics for Optical Communications, Department of Micro- and Nanotechnology, Nanophotonic Devices

Publication date: 2016

Main Research Area: Technical/natural sciences

Publication information

Journal: Scientific Reports

Volume: 6

Article number: 38801

ISSN (Print): 2045-2322

Ratings:

BFI (2018): BFI-level 1

Web of Science (2018): Indexed yes

BFI (2017): BFI-level 1

Scopus rating (2017): CiteScore 4.36 SJR 1.533 SNIP 1.245

Web of Science (2017): Indexed yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 4.63 SJR 1.692 SNIP 1.354

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 1

Scopus rating (2015): SJR 2.034 SNIP 1.597 CiteScore 5.3

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1

Scopus rating (2014): SJR 2.163 SNIP 1.554 CiteScore 4.75

Web of Science (2014): Indexed yes

BFI (2013): BFI-level 1

Scopus rating (2013): SJR 1.998 SNIP 1.57 CiteScore 4.06

ISI indexed (2013): ISI indexed yes

Web of Science (2013): Indexed yes

BFI (2012): BFI-level 1

Scopus rating (2012): SJR 1.531 SNIP 0.962 CiteScore 2.44

ISI indexed (2012): ISI indexed yes

Web of Science (2012): Indexed yes

ISI indexed (2011): ISI indexed no

Original language: English

Electronic versions:

srep38801.pdf

DOIs:

10.1038/srep38801

Bibliographical note

Creative Commons Attribution License 4.0

Source: FindIt

Source-ID: 2349594729

Publication: Research - peer-review → Journal article – Annual report year: 2016
Vertical-cavity laser with a novel grating mirror

Hybrid III-V on silicon (Si) ‘vertical cavity lasers’ (hybrid VCLs), which can emit light laterally into a Si waveguide, are fabricated and investigated. The Si-integrated hybrid VCL consists of a top dielectric Bragg reflector (DBR), a III-V active layer, and a bottom high contrast grating (HCG) mirror formed in the Si layer of a Si-on-insulator (SOI) wafer. The hybrid VCLs have a promising potential for very high-speed operation and low energy consumption, which is ideal for optical interconnects as well as large data center applications. For the experimental demonstration of hybrid VCLs, CMOS-compatible fabrication processes are designed and developed. These include a low-temperature direct wafer bonding process for integrating III-V layers onto a SOI wafer, as well as two types of DBR formation processes: a lift-off process and an etch-back process. Based on these, two versions of optically-pumped hybrid VCLs have been fabricated. The first version of hybrid VCL is designed for demonstrating in-plane emission into a Si waveguide. The in-plane emission is enabled by the bottom HCG abutting the Si waveguide, which not only functions as a highly reflective mirror but also routes the light from the vertical cavity laterally into the Si waveguide. The measured in-plane emission proves the lasing action with a side-mode suppression ratio (SMSR) of 27.5 dB at a peak wavelength of 1486 nm. The threshold pumping power corresponds to a current injection of 1.1 mA. A signature of highly anisotropic cavity dispersion has been observed and discussed, which is unique for HCG-based vertical cavities. The second version proves the potential for high-speed operation of hybrid VCL structure. In the hybrid VCL structure, the effective cavity length is substantially reduced by using a dielectric DBR and a TM-HCG with a very short evanescent tail. This reduces the photon lifetime of the laser cavity significantly without reducing the mirror reflectivity, leading to a very high intrinsic speed. A 3 dB frequency of 27.2 GHz was measured at a pumping power corresponding to a current injection of 0.7 mA. Since the pumping power was limited by the setup, the 3 dB frequency could be even higher. At this pumping level, the SMSR was about 49 dB and the lasing wavelength was 1541 nm. It was noteworthy that a modulation current efficiency factor (MCEF) of 42.1 GHz/mA, which is 3 times greater than the cutting edge 850 nm VCSEL. Besides, this large MCEF is desirable for significantly lowering the injection current at a given target speed, which implies the amount of heat generation can potentially be reduced by 2 orders of magnitude than the 850 nm VCSELs.

Last, a new type of grating reflector, referred to as hybrid grating (HG) is analyzed and demonstrated, which may improve the heat dissipation efficiency of HCG-based hybrid VCL structures. The HG mirror consisting of a bottom grating and a high-refractive-index cap layer integrated on the grating can provide a stop band even broader than HCG. The interaction between the cap and the bottom grating results in strong Fabry-Perot (FP) resonance as well as weak guided mode (GM) resonance. Most of the reflected power come from the FP resonance while the GM resonance performs a crucial role in achieving a reflectance of almost 100% as well as broadening the stopband as wide as 300 nm.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices, Centre of Excellence for Silicon Photonics for Optical Communications
Authors: Park, G. C. (Intern), Chung, I. (Intern), Semenova, E. (Intern)
Number of pages: 174
Publication date: 2016

Publication information
Publisher: DTU Fotonik
Original language: English
Main Research Area: Technical/natural sciences
Electronic versions:
GCPA_Thesis_Print.pdf

Relations
Projects:

Hybrid III-V/SOI single-mode vertical-cavity laser with in-plane emission into a silicon waveguide
We report a III-V-on-SOI vertical-cavity laser emitting into an in-plane Si waveguide fabricated by using CMOS-compatible processes. The fabricated laser operates at 1.54 µm with a SMSR of 33 dB and a low threshold.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices
Authors: Park, G. C. (Intern), Xue, W. (Intern), Semenova, E. (Intern), Mørk, J. (Intern), Chung, I. (Intern)
Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, an III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has the potential for ultrahigh-speed operation beyond 100 Gbit/s and features a novel mechanism for transverse mode control.
Ultrashort-cavity structure for III-V/SOI vertical cavity laser with light output into a Si waveguide is proposed, enabling 17 fJ/bit efficiency or 120 Gbit/s speed. Experimentally, 27-GHz bandwidth is demonstrated at 3.5 times of threshold. © 2015 OSA.
III-V/SOI vertical cavity laser with in-plane output into a Si waveguide
We experimentally demonstrate an optically-pumped III-V-on-SOI hybrid vertical-cavity laser that outputs light into an in-plane Si waveguide, using CMOS-compatible processes. The laser operates at 1.49 μm with a side-mode suppression-ratio of 27 dB and has a similar threshold as long-wavelength VCSELs.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices
Number of pages: 3
Publication date: 2015

Host publication information
Title of host publication: Proceedings of the Optical Fiber Communications Conference and Exhibition 2015
Publisher: IEEE
Article number: W2A.17
ISBN (Electronic): 978-1-55752-937-4
Main Research Area: Technical/natural sciences
Conference: Optical Fiber Communications Conference and Exposition 2015, Los Angeles, CA, United States, 22/03/2015 - 22/03/2015
Electronic versions:
3._OFC_III_V_SOI_vertical_cavity_laser_with_Inplane_output_into_a_Si_waveguide.pdf
DOI:
10.1364/OFC.2015.W2A.17

Bibliographical note
From the session: Poster I (W2A)
Source: PublicationPreSubmission
Source-ID: 107393368
Publication: Research - peer-review › Article in proceedings – Annual report year: 2015

Polarization-Independent Wideband High-Index-Contrast Grating Mirror
Island-type two-dimensional high-index-contrast grating mirror based on a standard silicon-on-insulator wafer have been experimentally demonstrated. The measured spectra shows a bandwidth of ~192 nm with a reflectivity over 99% as well as polarization independence. Numerical simulations show that the designed mirror has large tolerance to fabrication errors.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Plasmonics and Metamaterials
Authors: Bekele, D. A. (Intern), Park, G. C. (Intern), Malureanu, R. (Intern), Chung, I. (Intern)
Pages: 1733-1736
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: IEEE photonic Technology Letters
Volume: 27
Issue number: 16
ISSN (Print): 1041-1135
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.84 SJR 0.961 SNIP 1.25
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.52 SJR 0.989 SNIP 1.224
Hybrid grating reflector with high reflectivity and broad bandwidth

We suggest a new type of grating reflector denoted hybrid grating (HG) which shows large reflectivity in a broad wavelength range and has a structure suitable for realizing a vertical cavity laser with ultra-small modal volume. The properties of the grating reflector are investigated numerically and explained. The HG consists of an un-patterned III-V layer and a Si grating. The III-V layer has a thickness comparable to the grating layer, introduces more guided mode resonances and significantly increases the bandwidth of the reflector compared to the well-known high-index-contrast grating (HCG). By using an active III-V layer, a laser can be realized where the gain region is integrated into the mirror itself.

General information

State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Authors: Taghizadeh, A. (Intern), Park, G. C. (Intern), Mørk, J. (Intern), Chung, I. (Intern)
Pages: 21175-21184
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication Information

Journal: Optics Express
Volume: 22
Issue number: 18
ISSN (Print): 1094-4087
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.74 SJR 1.519 SNIP 1.567
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.48 SJR 1.532 SNIP 1.544
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.91 SNIP 1.674 CiteScore 3.78
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.313 SNIP 2.124 CiteScore 4.18
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 2.337 SNIP 2.196 CiteScore 4.38
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 2.562 SNIP 2.108 CiteScore 3.85
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 2.58 SNIP 2.572 CiteScore 4.04
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.906 SNIP 2.428
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.039 SNIP 2.679
Hybrid III-V-on-Si Vertical Cavity laser for Optical Interconnects

Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers.

Ultrahigh-speed hybrid laser for silicon photonic integrated chips

Increasing power consumption for electrical interconnects between and inside chips is posing a real challenge to continue the performance scaling of processors/computers as predicted by D. Moore. In recent processors, energy consumption for electrical interconnects is half of power supplied and will be 80% in near future. This challenge strongly has motivated replacing electrical interconnects with optical ones even in chip level communications [1]. This chip-level optical interconnects need quite different performance of optoelectronic devices than required for conventional optical communications. For a light source, the energy consumption per sending a bit is required to be <10 fJ/bit for on-chip interconnects and <100 fJ/bit for off-chip interconnects; this is two or three orders of magnitude smaller than the conventional devices. To meet the energy/bit requirement, many innovative laser diode and light-emitting diode (LED) structures have been proposed so far. Our hybrid laser is one of
these efforts [2].

The hybrid laser consists of a dielectric reflector, a III-V semiconductor active material, and a high-index-contrast grating (HCG) reflector formed in the silicon layer of a silicon-on-insulator (SOI) wafer. ‘Hybrid’ indicates that a III-V active material is wafer-bonded to a silicon SOI wafer. In the hybrid laser, light is vertically amplified between the dielectric and the HCG reflectors, while the light output is laterally emitted to a normal Si ridge waveguide that is connected to the HCG reflector. The HCG works as a vertical mirror as well as a vertical-to-lateral coupler. Very small field penetration into the HCG allows for 3-4 times smaller modal volume than typical vertical-cavity surface-emitting lasers (VCSELs). This leads to high direct modulation speed. Details on device operating mechanism will be explained in the lecture.

Recently, a nano light-emitting diode (LED) with energy/bit < 1fJ/bit [3] and a nano laser diode with a buried heterostructure (BH) active material [4] have been recently reported in the literature. Additionally, device physics, engineering issue, and error-free light detection issue in quantum limit will be discussed in relation to these two structures.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices
Authors: Chung, I. (Intern), Park, G. C. (Intern), Ran, Q. (Intern), Semenova, E. (Intern), Yvind, K. (Intern), Mørk, J. (Intern)
Number of pages: 1
Publication date: 2013

Host publication information
Title of host publication: NANO KOREA 2013
Main Research Area: Technical/natural sciences
Electronic versions:
NK2013_Abstract - Chung.pdf

Bibliographical note
Invited paper.
Source: dtu
Source-ID: u::10719
Publication: Research - peer-review › Conference abstract in proceedings – Annual report year: 2014

Projects:

Vertical-cavity laser with a novel grating mirror

Department of Photonics Engineering

Period: 15/02/2013 → 15/06/2016

Number of participants: 6

Phd Student:

Park, Gyeong Cheol (Intern)

Supervisor:

Semenova, Elizaveta (Intern)

Main Supervisor:

Chung, Il-Sug (Intern)

Examiner:

Frandsen, Lars Hagedorn (Intern)

Heck, Martijn (Ekstern)

Kapon, Eli (Ekstern)

Financing sources

Source: Internal funding (public)

Name of research programme: Institut stipendie (DTU) Samf.

Relations

Publications:

Vertical-cavity laser with a novel grating mirror

Project: PhD