Hybrid grating reflectors: Origin of ultrabroad stopband

Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Authors: Park, G. C. (Intern), Taghizadeh, A. (Intern), Chung, I. (Intern)
Number of pages: 5
Publication date: 2016
Main Research Area: Technical/natural sciences
<table>
<thead>
<tr>
<th>Year</th>
<th>BFI Level</th>
<th>Scopus Rating</th>
<th>Web of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>BFI-level 2</td>
<td>CiteScore 3.25, SJR 1.382, SNIP 1.167</td>
<td>Indexed yes</td>
</tr>
<tr>
<td>2017</td>
<td>BFI-level 2</td>
<td>CiteScore 2.67, SJR 1.673, SNIP 1.249</td>
<td>Impact factor 3.411</td>
</tr>
<tr>
<td>2016</td>
<td>BFI-level 2</td>
<td>SJR 1.499, SNIP 1.226, CiteScore 2.47</td>
<td>Impact factor 3.142</td>
</tr>
<tr>
<td>2015</td>
<td>BFI-level 2</td>
<td>SJR 1.861, SNIP 1.492, CiteScore 3.25</td>
<td>Impact factor 3.302</td>
</tr>
<tr>
<td>2014</td>
<td>BFI-level 2</td>
<td>SJR 2.146, SNIP 1.633, CiteScore 3.77</td>
<td>Impact factor 3.515</td>
</tr>
<tr>
<td>2013</td>
<td>BFI-level 2</td>
<td>SJR 2.57, SNIP 1.739, CiteScore 3.76</td>
<td>Impact factor 3.794</td>
</tr>
<tr>
<td>2012</td>
<td>BFI-level 2</td>
<td>SJR 2.814, SNIP 1.917, CiteScore 4.04</td>
<td>Impact factor 3.844</td>
</tr>
<tr>
<td>2011</td>
<td>BFI-level 2</td>
<td>SJR 2.92, SNIP 1.775</td>
<td>Impact factor 3.841</td>
</tr>
<tr>
<td>2010</td>
<td>BFI-level 2</td>
<td>SJR 3.012, SNIP 1.916</td>
<td>Impact factor 3.841</td>
</tr>
<tr>
<td>2009</td>
<td>BFI-level 2</td>
<td>SJR 3.459, SNIP 2.288</td>
<td>Impact factor 3.841</td>
</tr>
<tr>
<td>2008</td>
<td>BFI-level 2</td>
<td>SJR 3.755, SNIP 2.353</td>
<td>Impact factor 3.841</td>
</tr>
<tr>
<td>2007</td>
<td>BFI-level 2</td>
<td>SJR 3.992, SNIP 2.367</td>
<td>Impact factor 3.841</td>
</tr>
</tbody>
</table>
Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been investigated and the mechanisms leading to these properties are discussed. A HG reflector sample integrating a III-V cap layer with InGaAlAs quantum wells onto a Si grating has been fabricated and its reflection property has been characterized. The HG-based lasers have a promising prospect for silicon photonics light source or high-speed laser applications.

Hybrid III-V/SOI resonant cavity enhanced photodetector

A hybrid III–V/SOI resonant-cavity-enhanced photodetector (RCE-PD) structure comprising a high-contrast grating (HCG) reflector, a hybrid grating (HG) reflector, and an air cavity between them, has been proposed and investigated. In the proposed structure, a light absorbing material is integrated as part of the HG reflector, enabling a very compact vertical cavity. Numerical investigations show that a quantum efficiency close to 100 % and a detection linewidth of about 1 nm can be achieved, which are desirable for wavelength division multiplexing applications. Based on these results, a hybrid RCE-PD sample has been fabricated by heterogeneously integrating an InP-based material onto a silicon-on-insulator wafer and has been characterized, which shows a clear enhancement in photo-current at the designed wavelength. This indicates that the HG reflector provides a field enhancement sufficient for RCE-PD operation. In addition, a capability of feasibly selecting the detection wavelength during fabrication as well as a possibility of realizing silicon-integrated bidirectional transceivers are discussed.
Hybrid III-V/SOI Resonant Cavity Photodetector
A hybrid III-V/SOI resonant cavity photo detector has been demonstrated, which comprises an InP grating reflector and a Si grating reflector. It can selectively detects an incident light with 1.54-µm wavelength and TM polarization.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices, Centre of Excellence for Silicon Photonics for Optical Communications
Authors: Learkthanakhachon, S. (Intern), Taghizadeh, A. (Intern), Park, G. C. (Intern), Yvind, K. (Intern), Chung, I. (Intern)
Number of pages: 2
Pages: 134-135
Publication date: 2016

Host publication information
Title of host publication: Proceedings of the 13th International Conference on Group IV Photonics
Publisher: IEEE
ISBN (Print): 978-1-5090-1903-8
Main Research Area: Technical/natural sciences
Conference: 13th International Conference on Group IV Photonics, Shanghai, China, 24/08/2016 - 24/08/2016
DOIs: 10.1109/GROUP4.2016.7739128
Source: PublicationPreSubmission
Source-ID: 125560577
Publication: Research - peer-review › Article in proceedings – Annual report year: 2016

Ultrabroadband Hybrid III-V/SOI Grating Reflector for On-chip Lasers
We report on a new type of III-V/SOI grating reflector with a broad stopband of 350 nm. This reflector has promising prospects for applications in high-speed III-V/SOI vertical cavity lasers with an improved heat dissipation capability.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Authors: Park, G. C. (Intern), Taghizadeh, A. (Intern), Chung, I. (Intern)
Pages: 151-152
Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics

For on-chip interconnects, an ideal light source should have an ultralow energy consumption per bandwidth (operating energy) as well as sufficient output power for error-free detection. Nanocavity lasers have been considered the most ideal for smaller operating energy. However, they have a challenge in obtaining a sufficient output power. Here, as an alternative, we propose an ultrahigh-speed microcavity laser structure, based on a vertical cavity with a high-contrast grating (HCG) mirror for transverse magnetic (TM) polarisation. By using the TM HCG, a very small mode volume and an un-pumped compact optical feedback structure can be realised, which together tailor the frequency response function for achieving a very high speed at low injection currents. Furthermore, light can be emitted laterally into a Si waveguide. From an 1.54-μm optically-pumped laser, a 3-dB frequency of 27 GHz was obtained at a pumping level corresponding to sub-mA. Using measured 3-dB frequencies and calculated equivalent currents, the modulation current efficiency factor (MCEF) is estimated to be 42.1 GHz/mA(1/2), which is superior among microcavity lasers. This shows a high potential for a very high speed at low injection currents or very small heat generation at high bitrates, which are highly desirable for both on-chip and off-chip applications.
Hybrid III-V on silicon (Si) ‘vertical cavity lasers’ (hybrid VCLs), which can emit light laterally into a Si waveguide, are fabricated and investigated. The Si-integrated hybrid VCL consists of a top dielectric Bragg reflector (DBR), a III-V active layer, and a bottom high contrast grating (HCG) mirror formed in the Si layer of a Si-on-insulator (SOI) wafer. The hybrid VCLs have a promising potential for very high-speed operation and low energy consumption, which is ideal for optical interconnects as well as large data center applications. For the experimental demonstration of hybrid VCLs, CMOS-compatible fabrication processes are designed and developed. These include a low-temperature direct wafer bonding process for integrating III-V layers onto a SOI wafer, as well as two types of DBR formation processes: a lift-off process and an etch-back process. Based on these, two versions of optically-pumped hybrid VCLs have been fabricated. The first version of hybrid VCL is designed for demonstrating in-plane emission into a Si waveguide. The in-plane emission is enabled by the bottom HCG abutting the Si waveguide, which not only functions as a highly reflective mirror but also routes the light from the vertical cavity laterally into the Si waveguide. The measured in-plane emission proves the lasing action with a side-mode suppression ratio (SMSR) of 27.5 dB at a peak wavelength of 1486 nm. The threshold pumping power corresponds to a current injection of 1.1 mA. A signature of highly anisotropic cavity dispersion has been observed and discussed, which is unique for HCG-based vertical cavities. The second version proves the potential for high-speed operation of hybrid VCL structure. In the hybrid VCL structure, the effective cavity length is substantially reduced by using a dielectric DBR and a TM-HCG with a very short evanescent tail. This reduces the photon lifetime of the laser cavity significantly without reducing the mirror reflectivity, leading to a very high intrinsic speed. A 3 dB frequency of 27.2 GHz was measured at a pumping power corresponding to a current injection of 0.7 mA. Since the pumping power was limited by the setup, the 3 dB frequency could be even higher. At this pumping level, the SMSR was about 49 dB and the lasing wavelength was 1541 nm. It was noteworthy that a modulation current efficiency factor (MCEF) of 42.1 GHz/mA1/2, which is 3 times greater than the cutting edge 850 nm VCSEL. Besides, this large MCEF is desirable for significantly lowering the injection current at a given target speed, which implies the amount of heat generation can potentially be reduced by 2 orders of magnitude than the 850 nm VCSELs.

Last, a new type of grating reflector, referred to as hybrid grating (HG) is analyzed and demonstrated, which may improve the heat dissipation efficiency of HCG-based hybrid VCL structures. The HG mirror consisting of a bottom grating and a high-refractive-index cap layer integrated on the grating can provide a stop band even broader than HCG. The interaction between the cap and the bottom grating results in strong Fabry-Perot (FP) resonance as well as weak guided mode (GM) resonance. Most of the reflected power come from the FP resonance while the GM resonance performs a crucial role in achieving a reflectance of almost 100% as well as broadening the stopband as wide as 300 nm.
Hybrid III-V/SOI single-mode vertical-cavity laser with in-plane emission into a silicon waveguide

We report a III-V-on-SOI vertical-cavity laser emitting into an in-plane Si waveguide fabricated by using CMOS-compatible processes. The fabricated laser operates at 1.54 µm with a SMSR of 33 dB and a low threshold.

Hybrid vertical-cavity laser with lateral emission into a silicon waveguide

We experimentally demonstrate an optically-pumped III-V/Si vertical-cavity laser with lateral emission into a silicon waveguide. This on-chip hybrid laser comprises a distributed Bragg reflector, a III-V active layer, and a high-contrast grating reflector, which simultaneously funnels light into the waveguide integrated with the laser. This laser has the advantages of long-wavelength vertical-cavity surface-emitting lasers, such as low threshold and high side-mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has the potential for ultrahigh-speed operation beyond 100 Gbit/s and features a novel mechanism for transverse mode control.
Main Research Area: Technical/natural sciences

Publication information
Journal: Laser & Photonics Reviews
Volume: 9
Issue number: 3
ISSN (Print): 1863-8880
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 9.02 SJR 4.228 SNIP 2.988
Web of Science (2017): Impact factor 8.529
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 8.71 SJR 4.013 SNIP 3.351
Web of Science (2016): Impact factor 8.434
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 4.205 SNIP 3.479 CiteScore 8.54
Web of Science (2015): Impact factor 7.486
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 4.958 SNIP 4.446 CiteScore 8.62
Web of Science (2014): Impact factor 8.008
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 5.132 SNIP 4.796 CiteScore 9.26
Web of Science (2013): Impact factor 9.313
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 5.144 SNIP 3.617 CiteScore 7.59
Web of Science (2012): Impact factor 7.976
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 5.844 SNIP 4.857 CiteScore 7.98
Web of Science (2011): Impact factor 7.388
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 5.851 SNIP 4.009
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 4.896 SNIP 4.884
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.573 SNIP 3.117
Original language: English
Electronic versions:
Park_et_al_2015_Laser_Photonics_Reviews.pdf
DOIs:
10.1002/lpor.201400418
Source: PublicationPreSubmission
Source-ID: 107810404
III-V/SOI vertical cavity laser structure for 120 Gbit/s speed

Ultrashort-cavity structure for III-V/SOI vertical cavity laser with light output into a Si waveguide is proposed, enabling 17 fJ/bit efficiency or 120 Gbit/s speed. Experimentally, 27-GHz bandwidth is demonstrated at 3.5 times of threshold. © 2015 OSA.

General information

State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Department of Microand Nanotechnology, Nanophotonic Devices
Authors: Park, G. C. (Intern), Xue, W. (Intern), Mørk, J. (Intern), Semenova, E. (Intern), Chung, I. (Intern)
Publication date: 2015

Host publication information

Title of host publication: Integrated Photonics Research, Silicon and Nanophotonics 2015
Publisher: Optical Society of America
Article number: JT5A.2
ISBN (Print): 978-1-55752-000-5
Main Research Area: Technical/natural sciences
Conference: Integrated Photonics Research, Silicon and Nanophotonics 2015, Boston, Massachusetts, United States, 27/06/2015 - 27/06/2015
Electronic versions:

1. IPR_III_V_SOI_vertical_cavity_laser_structure_for_120_Gbit_s_speed.pdf
DOIs:
10.1364/iprsn.2015.jt5a.2

Bibliographical note

From the session: Postdeadline (JT5A)
Source: FindIt
Source-ID: 2287459226
Publication: Research - peer-review › Journal article – Annual report year: 2015

III-V/SOI vertical cavity laser with in-plane output into a Si waveguide

We experimentally demonstrate an optically-pumped III-V-on-SOI hybrid vertical-cavity laser that outputs light into an in-plane Si waveguide, using CMOS-compatible processes. The laser operates at 1.49 μm with a side-mode suppression-ratio of 27 dB and has a similar threshold as long-wavelength VCSELs.

General information

State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices
Number of pages: 3
Publication date: 2015

Host publication information

Title of host publication: Proceedings of the Optical Fiber Communications Conference and Exhibition 2015
Publisher: IEEE
Article number: W2A.17
ISBN (Electronic): 978-1-55752-937-4
Main Research Area: Technical/natural sciences
Conference: Optical Fiber Communications Conference and Exposition 2015, Los Angeles, CA, United States, 22/03/2015 - 22/03/2015
Electronic versions:

2. OFC_III_V_SOI_vertical_cavity_laser_with_Inplane_output_into_a_Si_waveguide.pdf
DOIs:
10.1364/OFC.2015.W2A.17

Bibliographical note

From the session: Poster I (W2A)
Polarization-Independent Wideband High-Index-Contrast Grating Mirror

Island-type two-dimensional high-index-contrast grating mirror based on a standard silicon-on-insulator wafer have been experimentally demonstrated. The measured spectra shows a bandwidth of ~192 nm with a reflectivity over 99% as well as polarization independence. Numerical simulations show that the designed mirror has large tolerance to fabrication errors.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Plasmonics and Metamaterials
Authors: Bekele, D. A. (Intern), Park, G. C. (Intern), Malureanu, R. (Intern), Chung, I. (Intern)
Pages: 1733-1736
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: IEEE photonics Technology Letters
Volume: 27
Issue number: 16
ISSN (Print): 1041-1135
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.84 SJR 0.961 SNIP 1.25
Web of Science (2017): Impact factor 2.446
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.52 SJR 0.989 SNIP 1.224
Web of Science (2016): Impact factor 2.375
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 1.19 SNIP 1.266 CiteScore 2.62
Web of Science (2015): Impact factor 1.945
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 1.421 SNIP 1.583 CiteScore 2.78
Web of Science (2014): Impact factor 2.11
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.495 SNIP 1.548 CiteScore 2.95
Web of Science (2013): Impact factor 2.176
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 1.647 SNIP 1.694 CiteScore 2.46
Web of Science (2012): Impact factor 2.038
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 1.539 SNIP 2.04 CiteScore 2.48
Web of Science (2011): Impact factor 2.191
ISI indexed (2011): ISI indexed yes
Hybrid grating reflector with high reflectivity and broad bandwidth

We suggest a new type of grating reflector denoted hybrid grating (HG) which shows large reflectivity in a broad wavelength range and has a structure suitable for realizing a vertical cavity laser with ultra-small modal volume. The properties of the grating reflector are investigated numerically and explained. The HG consists of an un-patterned III-V layer and a Si grating. The III-V layer has a thickness comparable to the grating layer, introduces more guided mode resonances and significantly increases the bandwidth of the reflector compared to the well-known high-index-contrast grating (HCG). By using an active III-V layer, a laser can be realized where the gain region is integrated into the mirror itself.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Authors: Taghizadeh, A. (Intern), Park, G. C. (Intern), Mørk, J. (Intern), Chung, I. (Intern)
Pages: 21175-21184
Publication date: 2014
Hybrid III-V-on-Si Vertical Cavity laser for Optical Interconnects
Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices
Authors: Park, G. C. (Intern), Semenova, E. (Intern), Chung, I. (Intern)
Pages: B90-B91
Publication date: 2013

Host publication information
Title of host publication: iNOW 2013 : International Nano-Optoelectronics Workshop
Main Research Area: Technical/natural sciences
Source: dtu
Source-ID: u::10718
Publication: Research - peer-review › Article in proceedings – Annual report year: 2014

Ultrahigh-speed hybrid laser for silicon photonic integrated chips
Increasing power consumption for electrical interconnects between and inside chips is posing a real challenge to continue the performance scaling of processors/computers as predicted by D. Moore. In recent processors, energy consumption for electrical interconnects is half of power supplied and will be 80% in near future. This challenge strongly has motivated replacing electrical interconnects with optical ones even in chip level communications [1]. This chip-level optical interconnects need quite different performance of optoelectronic devices than required for conventional optical communications. For a light source, the energy consumption per sending a bit is required to be <10 fJ/bit for on-chip interconnects and <100 fJ/bit for off-chip interconnects; this is two or three orders of magnitude smaller than the conventional devices. To meet the energy/bit requirement, many innovative laser diode and light-emitting diode (LED) structures have been proposed so far. Our hybrid laser is one of these efforts [2].

The hybrid laser consists of a dielectric reflector, a III-V semiconductor active material, and a high-index-contrast grating (HCG) reflector formed in the silicon layer of a silicon-on-insulator (SOI) wafer. ‘Hybrid’ indicates that a III-V active material is wafer-bonded to a silicon SOI wafer. In the hybrid laser, light is vertically amplified between the dielectric and the HCG reflectors, while the light output is laterally emitted to a normal Si ridge waveguide that is connected to the HCG reflector. The HCG works as a vertical mirror as well as a vertical-to-lateral coupler. Very small field penetration into the HCG allows for 3-4 times smaller modal volume than typical vertical-cavity surface-emitting lasers (VCSELs). This leads to high direct modulation speed. Details on device operating mechanism will be explained in the lecture.
Recently, a nano light-emitting diode (LED) with energy/bit < 1fJ/bit [3] and a nano laser diode with a buried heterostructure (BH) active material [4] have been recently reported in the literature. Additionally, device physics, engineering issue, and error-free light detection issue in quantum limit will be discussed in relation to these two structures.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, Nanophotonic Devices
Authors: Chung, I. (Intern), Park, G. C. (Intern), Ran, Q. (Intern), Semenova, E. (Intern), Yvind, K. (Intern), Mørk, J. (Intern)
Number of pages: 1
Publication date: 2013

Host publication information
Title of host publication: NANO KOREA 2013
Main Research Area: Technical/natural sciences
Electronic versions:
NK2013_Abstract - Chung.pdf

Bibliographical note
Invited paper.
Source: dtu
Source-ID: u::10719
Publication: Research - peer-review › Conference abstract in proceedings – Annual report year: 2014

Projects:

Vertical-cavity laser with a novel grating mirror
Department of Photonics Engineering
Period: 15/02/2013 → 15/06/2016
Number of participants: 6
Phd Student:
Park, Gyeong Cheol (Intern)
Supervisor:
Semenova, Elizaveta (Intern)
Main Supervisor:
Chung, Il-Sug (Intern)
Examiner:
Frandsen, Lars Hagedorn (Intern)
Heck, Martijn (Ekstern)
Kapon, Eli (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU) Samf.

Relations
Publications:
Vertical-cavity laser with a novel grating mirror
Project: PhD