TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish energy system

As Denmark progresses towards a carbon neutral future, energy system models are required to address the challenges of the energy transition. This article describes design, input data and current usage of TIMES-DK, the first Danish energy system model that includes the complete national energy system, covering long-term technology investments. The article aims at explaining the modelling approach; highlighting strengths and reflecting upon limitations of the model; illustrating possible applications of TIMES-DK and inspiring new model developments. Some of the key strengths of the model include simultaneous optimisation of operation and investments across the complete energy system over the whole modelling horizon, explicit representation of the most important sectors of the economy, modular structure and the possibility of linking to a computable general equilibrium model for an additional insight on, e.g. public finance or CO2-leakage. TIMES-DK is being developed in close collaboration between an energy agency, a university and a consulting firm, to improve its robustness, relevance and impact on policy making. It allows for a wide range of applications including exploratory energy scenarios and policy analysis. To meet challenges of the future, further development of the model is needed and consequently the article provides references to ongoing projects addressing current development needs, such as improved representation of transport and flexible handling of the temporal dimension. To support a democratic and transparent process around decisions for the future Danish energy system, TIMES-DK should become available to interested parties.
Improvements in the representation of behavior in integrated energy and transport models

The inclusion of sociological aspects, as human behavior related to transportation, in energy–economy–environment (E3) models may enable an inclusive representation of the system under analysis, thus providing a more likely representation of reality. This article presents a review of integrated energy and transport models characterized by a detailed description of the passenger transport sector and by the presence of transport behavioral features. First, we propose a working taxonomy based on the level of integration of the energy and transport sectors. As the study underlines, a high level of integration is a precondition for incorporating the consumer behavior related to purchase decisions and use of transport technologies in energy and transport models. Second, we identify and review the recurring behavioral features related to transport included in current integrated energy and transport models: technology choice, modal choice, driving pattern, and new mobility trends. The main contribution of the paper resides in analyzing the modeling methodologies adopted in the literature to incorporate behavioral features in transport and in examining opportunities and challenges of each of them. We draw recommendations on model structure and relevant attributes to consider in relation to consumers’ choices in transportation.

General information
State: Accepted/In press
Organisations: Department of Management Engineering, Systems Analysis, University College Cork
Contributors: Venturini, G., Tattini, J., Mulholland, E., Gallachóir, B. Ó.
Number of pages: 20
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: International Journal of Sustainable Transportation
ISSN (Print): 1556-8318
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.95 SJR 1.058 SNIP 1.127
Web of Science (2017): Impact factor 1.892
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.91 SJR 1.032 SNIP 1.451
Web of Science (2016): Impact factor 1.973
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
A Long-Term Strategy to Decarbonise the Danish Inland Passenger Transport Sector

This study applies a novel modelling framework to assess how alternative policies may contribute to a fossil-free transport sector for Denmark and the potential contribution they may have to a well-below 2Â°C world. The approach adopted consists of linking an energy system optimisation model, TIMES-DKMS, with a private car simulation model, the Danish Car Stock Model. The results of this study include the magnitude of CO2 abatement presented alongside the corresponding change in tax revenue generated through combinations of policies focusing on the derogation of motor taxes for low emission vehicles and banning the sale of the internal combustion engines. The resulting cumulative emissions from the Danish energy system are also compared to a range of national carbon budgets, calculated to adhere to various levels of global temperature rise at different levels of confidence. The results indicate that a ban on the sale of the internal combustion engines enforced in 2025 would enable the largest cut in cumulative greenhouse gas emissions of all the policies considered. However, none of the policies analysed comply with Denmarkâ€™s carbon budget capable of maintaining the increase of global temperature limited to 1.5Â°C.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, University College Cork, E4SMA
Contributors: Tattini, J., Mulholland, E., Venturini, G., Ahanchian, M., Gargiulo, M., Balyk, O., Karlsson, K. B.
Pages: 137-153
Publication date: 2018

Host publication information
Title of host publication: Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development
Publisher: Springer
(Lecture Notes in Energy, Vol. 64).
Research output: Research - peer-review > Book chapter – Annual report year: 2018
The multi-port berth allocation problem with speed optimization and emission considerations

The container shipping industry faces many interrelated challenges and opportunities, as its role in the global trading system has become increasingly important over the last decades. On the one side, collaboration between port terminals and shipping liners can lead to costs savings and help achieve a sustainable supply chain, and on the other side, the optimization of operations and sailing times leads to reductions in bunker consumption and, thus, to fuel cost and air emissions reductions. To that effect, there is an increasing need to address the integration opportunities and environmental issues related to container shipping through optimization. This paper focuses on the well known Berth Allocation Problem (BAP), an optimization problem assigning berthing times and positions to vessels in container terminals. We introduce a novel mathematical formulation that extends the classical BAP to cover multiple ports in a shipping network under the assumption of strong cooperation between shipping lines and terminals. Speed is optimized on all sailing legs between ports, demonstrating the effect of speed optimization in reducing the total time of the operation, as well as total fuel consumption and emissions. Furthermore, the model implementation shows that an accurate speed discretization can result in far better economic and environmental results.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, Management Science, Operations Management, Transport DTU, Liverpool John Moores University
Contributors: Venturini, G., Iris, C., Kontovas, C. A., Larsen, A.
Pages: 142-159
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Transportation Research. Part D: Transport & Environment
Volume: 54
ISSN (Print): 1361-9209
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.95 SJR 1.359 SNIP 1.803
Web of Science (2017): Impact factor 3.445
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.08 SJR 1.243 SNIP 1.672
Web of Science (2016): Impact factor 2.341
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.65 SJR 1.157 SNIP 1.366
Web of Science (2015): Impact factor 1.864
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.49 SJR 1.428 SNIP 1.969
Web of Science (2014): Impact factor 1.937
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.08 SJR 1.196 SNIP 1.743
Web of Science (2013): Impact factor 1.626
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2 SJR 1.139 SNIP 1.663
Web of Science (2012): Impact factor 1.291
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.86 SJR 0.992 SNIP 1.765
Modelling alternative fuel production technologies for the future Danish energy and transport system

General information
State: Published
Organisations: Department of Management Engineering
Contributors: Venturini, G., Pizarro Alonso, A. R., Münster, M.
Number of pages: 1
Publication date: 2016
Peer-reviewed: Yes
Event: Poster session presented at wholeSEM Annual Conference, United Kingdom.
Electronic versions:
Poster_wholeSEM_GiadaVenturini.pdf
Source: PublicationPreSubmission
Source-ID: 124384532
Research output: Research - peer-review › Poster – Annual report year: 2016

Nordic Energy Technology Perspectives 2016

General information
State: Published
Organisations: Department of Management Engineering, Energy Economics and Regulation
Contributors: Karlsson, K. B., Münster, M., Skytte, K., Pérez, C. H. C., Venturini, G., Salvucci, R., Pedersen, R. B. B.
Publication date: 2016

Publication information
Original language: English
Electronic versions:
Nordic_Energy_Technology_Perspectives_2016.pdf

Bibliographical note
Figures and data in this report can be downloaded at www.iea.org/etp/nordic
Source: PublicationPreSubmission
Source-ID: 126260475
Modelling Behaviour in Integrated Energy and Transport Models - A review

General information
State: Published
Organisations: Systems Analysis, Energy Systems Analysis, Department of Management Engineering
Contributors: Venturini, G.
Publication date: 2015
Media of output: PowerPoint

Event information
Event: 68th Semi-Annual ETSAP Meeting
Location: Sophia Antipolis, France
Electronic versions:
Modelling_Behaviour.pdf
Source: PublicationPreSubmission
Source-ID: 118890116
Research output: Research › Sound/Visual production (digital) – Annual report year: 2015

Projects:
Modelling, Transport Fuels and Future Scenarios for the Danish Energy System
Venturini, G., PhD Student, Department of Management Engineering
Münster, M., Main Supervisor, Department of Management Engineering
Gallachóir, B. P. Ó., Supervisor
Karlsøn, K. B., Supervisor, Department of Management Engineering
Jørgensen, B. H., Examiner, Department of Management Engineering
Bolkesjø, T. F., Examiner
Krook-Riekkola, A., Examiner
Samfinansieret - Andet
01/07/2015 → 28/10/2018
Award relations: Modelling, Transport Fuels and Future Scenarios for the Danish Energy System
Project: PhD

Activities:
wholeSEM Annual Conference
Giada Venturini (Participant)
Department of Management Engineering
Description
Poster presentation
Documents:
Poster_wholeSEM_GiadaVenturini

Related event
wholeSEM Annual Conference
04/07/2016 → 05/07/2016
United Kingdom
Activity: Attending an event › Participating in or organising a conference

International Energy Workshop 2016
Period: 1 Jun 2016 → 3 Jun 2016
Giada Venturini (Participant)
Department of Management Engineering
Abstract: The challenging task of adequately including sociological aspects as human behaviours related to transport in economy-energy-environment models, may enable an inclusive representation of the system under analysis, thus providing results which are closer to reality. This work represents a preliminary review of energy systems models where a sufficiently detailed representation of the transport sector is present. This in particular allows to study which transport-related behaviours are modelled in energy system models and which methods are adopted, with the aim of comprehensively understand the opportunities and challenges of such implementation in TIMES-DK. The analysis firstly provides a classification of economy-energy-environment models, according to the level of integration of the transport system, here emphasizing the need for clarifying the aggregation level required in the representation of the transport system in order to include human behaviours. The study subsequently reviews above 25 models where different transport-related behaviours were accounted for, highlighting on the one side the focus and direction of the current research and on the other side the overlooked aspects. The work thus offers a contribution in this research area, providing an updated overview of selected transport-related behaviours and the different possibilities for representing them in integrated energy and transport models.

Presentation: Modelling Behaviour in Integrated Energy and Transport Models - A review