Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

The printing and modular fabrication of a paper-based active microfluidic lab on a chip implemented with electrochemical sensors (ECSs) is developed and integrated on a portable electrical control system. The electrodes of a chip plate for active electrowetting actuation of digital drops and an ECS for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber modules are assembled modularly on an open chip plate, forming various novel hybridized open–closed chip formats. By varying the coupled or decoupled sensor modules, excellent detection of three diagnostic biological molecules is demonstrated (glucose, dopamine, and uric acid in human serum). With a newly designed portable power supply and wireless control system, the active paper-based chip platform can be utilized as an advanced point-of-care device for multiple assays in digital microfluidics.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Embedded Systems Engineering, Chulalongkorn University, Sogang University
Number of pages: 8
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Advanced Materials Technologies
Volume: 2
Issue number: 3
ISSN (Print): 2365-709x
Ratings:
Web of Science (2017): Indexed yes
Web of Science (2016): Indexed yes
Original language: English
DOIs:
10.1002/admt.201600267
Projects:

Portable Diagnostic Laboratory to Diagnose Thyroid Gland Related Disorders

Technical University of Denmark
Period: 01/07/2017 → 30/06/2020
Number of participants: 4
Phd Student:
Tanev, Georgi Plamenov (Intern)
Supervisor:
Schjøler, Karin (Ekstern)
Svendsen, Winnie Edith (Intern)
Main Supervisor:
Madsen, Jan (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Samfinansieret - Andet
Project: PhD