Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating
We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerically predict the wavelength conversion efficiency for degenerate four-wave mixing, and obtain a 3 dB bandwidth of 80 nm.

All-fiber photon-pair source at telecom wavelengths
Single photon sources are a key element for quantum computing, quantum key distribution (QKD) and quantum communications. In particular, producing single photons at telecommunications wavelengths is valuable for QKD protocols and would enable realizing the quantum internet. The preferred method for their generation has long been spontaneous down conversion in bulk crystals, which suffers from connection loss to fiber networks. In-fiber spontaneous four-wave mixing provides a viable alternative as a photon pair source due to being compatible with existing fiber networks. We present an all-fiber photon pair source based on degenerate four-wave mixing in a 400 m Highly-Nonlinear fiber, with signal and idler wavelengths generated at 1552.5 nm and 1557 nm respectively. The source consists of CW pump laser operating at 1554.75 nm, which is slightly detuned from the zero group velocity dispersion wavelength into the normal dispersion regime. After pair generation in the highly-nonlinear fiber, three arrayed waveguide gratings are employed to spatially separate signal and idler, and provides a 120 dB pump power reduction. Firstly the source is modelled and experimentally characterized in the well known classical regime of stimulated four-wave mixing. The effect of fiber cooling on spontaneous Raman scattering is modelled and characterized, and a 30% reduction in spontaneous emission is found
when cooling the fiber to −77 °C. In the low power regime the coincidence to accidental count ratio is simulated and measured. An increase in the coincidence to accidental count ratio is observed when cooling the fiber.

General information

State: Published
Organisations: Department of Photonics Engineering, Fiber Optics, Devices and Non-linear Effects, Centre of Excellence for Silicon Photonics for Optical Communications
Authors: Christensen, E. N. (Intern), Usuga Castaneda, M. A. (Intern), Rottwitt, K. (Intern)
Number of pages: 8
Publication date: 2017

Host publication Information

Title of host publication: Proceedings of SPIE
Volume: 10118
Publisher: SPIE - International Society for Optical Engineering
Article number: 1011814

Series: Proceedings of SPIE, the International Society for Optical Engineering
Volume: 10118
ISSN: 0277-786X
Main Research Area: Technical/natural sciences
Conference: Advances in Photonics of Quantum Computing, Memory, and Communication X, San Francisco, United States, 28/01/2017 - 28/01/2017
Quantum optics, Four-wave mixing, Photon pair generation, Quantum communications, Quantum cryptography, Fiber optics

Electronic versions:
1011814.pdf
DOIs:
10.1117/12.2252019

Bibliographical note

Copyright 2017 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Source: PublicationPreSubmission
Source-ID: 130214011
Publication: Research - peer-review › Article in proceedings – Annual report year: 2017

Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides

We derive from Maxwell's equations full-vectorial nonlinear propagation equations of four-wave mixing valid in straight semiconductor-on-insulator waveguides. Special attention is given to the resulting effective mode area, which takes a convenient form known from studies in photonic crystal fibers, but has not been introduced in the context of integrated waveguides. We show that the difference between our full-vectorial effective mode area and the scalar equivalent often referred to in the literature may lead to mistakes when evaluating the nonlinear refractive index and optimizing designs of new waveguides. We verify the results of our derivation by comparing it to experimental measurements in a silicon-on-insulator waveguide, taking tolerances on fabrication parameters into account. (C) 2017 Optical Society of America

General information

State: Published
Organisations: Department of Photonics Engineering, Fiber Optics, Devices and Non-linear Effects, Centre of Excellence for Silicon Photonics for Optical Communications, Nanophotonic Devices, High-Speed Optical Communication, Diode Lasers and LED Systems, National University of Defense Technology, Technical University of Denmark
Authors: Guo, K. (Ekstern), Friis, S. M. M. (Intern), Christensen, J. B. (Intern), Christensen, E. N. (Intern), Shi, X. (Ekstern), Ding, Y. (Intern), Ou, H. (Intern), Rottwitt, K. (Intern)
Pages: 3670-3673
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information

Journal: Optics Letters
Volume: 42
Issue number: 18
ISSN (Print): 0146-9592
Ratings:
BFI (2017): BFI-level 2
High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide: Letters
We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of $g^{(2)}(0) = 0.12$, demonstrating that our source operates in the single-photon regime with low noise. (C) 2017 The Japan Society of Applied Physics
Experimental characterization of Raman overlaps between mode-groups

Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition, distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise properties and the possibility of mode-equalized gain. In this paper, we present an experimental characterization of the intermodal Raman intensity overlaps of a few-mode fiber using backward-pumped Raman amplification. By varying the input pump power and the degree of higher order mode-excitation for the pump and the signal in a 10km long two-mode fiber, we are able to characterize all intermodal Raman intensity overlaps. Using these results, we perform a Raman amplification measurement and demonstrate a mode-differential gain of only 0.25dB per 10dB overall gain. This is, to the best of our knowledge, the lowest mode differential gain achieved for amplification of mode division multiplexed signals in a single fiber.

General information
State: Published
Organisations: Department of Photonics Engineering, Fiber Optics, Devices and Non-linear Effects, Centre of Excellence for Silicon Photonics for Optical Communications, Department of Physics
Authors: Christensen, E. N. (Intern), Koefoed, J. G. (Intern), Friis, S. M. M. (Intern), Usuga Castaneda, M. A. (Intern), Rottwitt, K. (Intern)
Number of pages: 6
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Scientific Reports
Volume: 6
Article number: 34693
ISSN (Print): 2045-2322
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.63 SJR 1.625 SNIP 1.401
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 2.057 SNIP 1.684 CiteScore 5.3
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 2.103 SNIP 1.544 CiteScore 4.75
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.886 SNIP 1.51 CiteScore 4.06
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.458 SNIP 0.896 CiteScore 2.44
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
ISI indexed (2011): ISI indexed no
Higher order mode optical fiber Raman amplifiers

We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.

General information

State: Published
Organisations: Department of Photonics Engineering, Fiber Optics, Devices and Non-linear Effects, Centre of Excellence for Silicon Photonics for Optical Communications, Department of Physics
Authors: Rottwitt, K. (Intern), Friis, S. M. M. (Intern), Usuga Castaneda, M. A. (Intern), Christensen, E. N. (Intern), Koefoed, J. G. (Intern)
Number of pages: 4
Publication date: 2016

Host publication information
Title of host publication: Proceedings of 2016 18th International Conference on Transparent Optical Networks
Publisher: IEEE
Article number: Mo.D1.5
ISBN (Print): 978-1-5090-1467-5
Series: International Conference on Transparent Optical Networks
ISSN: 2162-7339
Main Research Area: Technical/natural sciences
Conference: 18th International Conference on Transparent Optical Networks, Trento, Italy, 10/07/2016 - 10/07/2016
optical fibre amplifiers, higher order mode fiber optics, optical fiber Raman amplifiers, space division multiplexed optical communication systems, Optical fibre amplifiers, Stimulated emission, Optical fiber polarization, Optical fiber communication, Couplings, Gain, fiber amplifiers, optical communication, Fibre lasers and amplifiers, Computer Networks and Communications, Electrical and Electronic Engineering, Electronic, Optical and Magnetic Materials, Fiber amplifiers, Fiber optic networks, Optical communication, Optical fibers, Raman scattering, Transparent optical networks, Higher-order modes, Optical fiber Raman amplifier, Raman amplifier, Space division
DOIs:
10.1109/ICTON.2016.7550315
Source: FindIt
Source-ID: 2342284049
Publication: Research - peer-review › Article in proceedings – Annual report year: 2016

Projects:

Four-wave Mixing in Higher Order Mode Optical Fibers

Department of Photonics Engineering
Period: 01/05/2016 → 30/04/2019
Number of participants: 3
Phd Student:
Christensen, Erik Nicolai (Intern)
Supervisor:
Usuga Castaneda, Mario A. (Intern)
Main Supervisor:
Rottwitt, Karsten (Intern)
Financing sources

Source: Internal funding (public)

Name of research programme: Forskningsrådsfinansiering

Project: PhD