Inferring Person-to-person Proximity Using WiFi Signals

Today's societies are enveloped in an ever-growing telecommunication infrastructure. This infrastructure offers important opportunities for sensing and recording a multitude of human behaviors. Human mobility patterns are a prominent example of such a behavior which has been studied based on cell phone towers, Bluetooth beacons, and WiFi networks as proxies for location. However, while mobility is an important aspect of human behavior, understanding complex social systems requires studying not only the movement of individuals, but also their interactions. Sensing social interactions on a large scale is a technical challenge and many commonly used approaches—including RFID badges or Bluetooth scanning—offer only limited scalability. Here we show that it is possible, in a scalable and robust way, to accurately infer person-to-person physical proximity from the lists of WiFi access points measured by smartphones carried by the two individuals. Based on a longitudinal dataset of approximately 800 participants with ground-truth interactions collected over a year, we show that our model performs better than the current state-of-the-art. Our results demonstrate the value of WiFi signals in social sensing as well as potential threats to privacy that they imply.
We test the performance of our allocation strategy using real data from over 600 peer feedback sessions and simulate the effects of different allocation strategies. By comparing our method with a random allocation algorithm and a “super-informed oracle” algorithm we demonstrate that we are able to allocate reviewers to submissions in such a way that all submissions receive feedback of similar quality and that we are able to significantly outperform simple random allocation of reviewers. Additionally we investigate the effect of pre-allocating reviews in comparison to allocating reviewers live during the review process and show that live-allocation leads to better results. Our method is robust to reviews not being completed and other real-life quirks and improves as more feedback data is collected.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, Peergrade, Københavns Universitet
Publication date: 2017

Host publication information

Title of host publication: Proceedings of 16th European Conference on eLearning
Main Research Area: Technical/natural sciences
Conference: 16th European Conference on eLearning, Porto, Portugal, 26/10/2017 - 26/10/2017
peer assessment, peer feedback, feedback, peer review, peer evaluation, peer grading, task assignment, reviewer allocation

Bibliographical note

For ECEL2017 http://www.academic-conferences.org/conferences/ecel/
Source: PublicationPreSubmission
Source-ID: 138400287
Publication: Research - peer-review > Article in proceedings – Annual report year: 2017

Quantifying Feedback – Insights Into Peer Assessment Data

The act of producing content - for example in forms of written reports - is one of the most used methods for teaching and learning all the way from primary school to university. It is a learning tool which helps students relate their theories to practice. Getting relevant and helpful feedback on this work is important to ensure a good learning experience for the students. Providing this feedback is often a time-consuming job for the teacher. An effective way to learn is to teach others, and similarly give feedback on work done by others. One way to approach a combined solution to the above challenges, is to use peer assessment in the classroom which as a learning method has become more and more popular.

In this paper we look at data collected using the web-based peer assessment system Peergrade. The dataset consists of over 350 courses at more than 20 educational institutions and with a total of more than 10,000 students. The students have together made more than 100,000 peer-evaluations of work by other students, and these evaluations together contain more than 10,000,000 words of text feedback. A key problem when using peer assessment is to ensure high quality feedback between peers. Feedback here can be a combination of quantitative / summative feedback (numerical) and qualitative / formative feedback (text). A lot of work has been done on validating and ensuring quality of quantitative feedback. We propose a way to let students evaluate the quality of the feedback they receive to obtain a quality measure for the feedback. We investigate this measure of feedback quality, which biases are present and what trends can be observed across the dataset. Using our measure of feedback quality, we investigate how it relates to various factors like the length of the feedback text, the number of spelling mistakes, how positive it is and measures of the student’s report-writing skills.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, Københavns Universitet
Authors: Wind, D. K. (Intern), Jensen, U. A. (Forskerdatabase)
Number of pages: 10
Publication date: 2017

Host publication information

Title of host publication: Proceedings of the 12th International Conference on e-Learning
Main Research Area: Technical/natural sciences
Conference: 12th International Conference on e-Learning, Orlando, United States, 01/06/2017 - 01/06/2017
Peer assessment, Peer feedback, Feedback, Peer review, Peer evaluation, Peer grading
Source: PublicationPreSubmission
Source-ID: 138400219
Publication: Research - peer-review > Article in proceedings – Annual report year: 2017
Inferring Stop-Locations from WiFi

Human mobility patterns are inherently complex. In terms of understanding these patterns, the process of converting raw data into series of stop-locations and transitions is an important first step which greatly reduces the volume of data, thus simplifying the subsequent analyses. Previous research into the mobility of individuals has focused on inferring ‘stop locations’ (places of stationarity) from GPS or CDR data, or on detection of state (static/active). In this paper we bridge the gap between the two approaches: we introduce methods for detecting both mobility state and stop-locations. In addition, our methods are based exclusively on WiFi data. We study two months of WiFi data collected every two minutes by a smartphone, and infer stop-locations in the form of labelled time-intervals. For this purpose, we investigate two algorithms, both of which scale to large datasets: a greedy approach to select the most important routers and one which uses a density-based clustering algorithm to detect router fingerprints. We validate our results using participants’ GPS data as well as ground truth data collected during a two month period.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, Technical University of Denmark
Authors: Wind, D. K. (Intern), Sapiezynski, P. (Intern), Furman, M. A. (Ekstern), Jørgensen, S. L. (Intern)
Number of pages: 15
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: P L o S One
Volume: 11
Issue number: 2
Article number: e0149105
ISSN (Print): 1932-6203
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.11 SJR 1.201 SNIP 1.092
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.414 SNIP 1.131 CiteScore 3.32
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.545 SNIP 1.141 CiteScore 3.54
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.74 SNIP 1.147 CiteScore 3.94
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.945 SNIP 1.142 CiteScore 4.15
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 2.369 SNIP 1.23 CiteScore 4.58
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.631 SNIP 1.161
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.473 SNIP 0.985
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Model Selection in Data Analysis Competitions

The use of data analysis competitions for selecting the most appropriate model for a problem is a recent innovation in the field of predictive machine learning. Two of the most well-known examples of this trend was the Netflix Competition and recently the competitions hosted on the online platform Kaggle. In this paper, we will state and try to verify a set of qualitative hypotheses about predictive modelling, both in general and in the scope of data analysis competitions. To verify our hypotheses we will look at previous competitions and their outcomes, use qualitative interviews with top performers from Kaggle and use previous personal experiences from competing in Kaggle competitions. The stated hypotheses about feature engineering, ensembling, overfitting, model complexity and evaluation metrics give indications and guidelines on how to select a proper model for performing well in a competition on Kaggle.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems
Authors: Wind, D. K. (Intern), Winther, O. (Intern)
Pages: 55-60
Publication date: 2014

Host publication information

Title of host publication: Meta-learning and Algorithm Selection: Proceedings of the International Workshop on Meta-learning and Algorithm Selection co-located with 21st European Conference on Artificial Intelligence (ECAI 2014)
Editors: Vanschoren, J., Brazdil, P., Soares, C., Kotthoff, L.
Series: CEUR Workshop Proceedings
Volume: 1202
ISSN: 1613-0073
BFI conference series: European Conference on Artificial Intelligence (5000092)
Main Research Area: Technical/natural sciences
Conference: 21st European Conference on Artificial Intelligence (ECAI 2014), Prague, Czech Republic, 18/08/2014 - 18/08/2014
Source: PublicationPreSubmission
Source-ID: 100924956
Publication: Research - peer-review › Article in proceedings – Annual report year: 2014

On the number of spanning trees in random regular graphs

Let $d \geq 3$ be a fixed integer. We give an asymptotic formula for the expected number of spanning trees in a uniformly random d-regular graph with n vertices. (The asymptotics are as $n \to \infty$, restricted to even n if d is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed) d. Numerical evidence is presented which supports our conjecture.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, University of New South Wales
Authors: Greenhill, C. (Ekstern), Kwan, M. (Ekstern), Wind, D. K. (Intern)
Number of pages: 26
Publication date: 2014
Link prediction in weighted networks
Many complex networks feature relations with weight information. Some models utilize this information while other ignore the weight information when inferring the structure. In this paper we investigate if edge-weights when modeling real networks, carry important information about the network structure. We compare five prominent models by their ability to predict links both in the presence and absence of weight information. In addition we quantify the models ability to account for the edge-weight information. We find that the complex models generally outperform simpler models when the task is to infer presence of edges, but that simpler models are better at inferring the actual weights.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, Department of Informatics and Mathematical Modeling, Cognitive Systems
Authors: Wind, D. K. (Intern), Mørup, M. (Intern)
Number of pages: 6
Publication date: 2012

Host publication information
Title of host publication: 2012 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
Place of publication: 978-1-4673-1025-3
Publisher: IEEE
ISBN (Print): 978-1-4673-1024-6
Series: Machine Learning for Signal Processing
ISSN: 1551-2541
Main Research Area: Technical/natural sciences
Complex networks, Weighted graphs, Stochastic Blockmodels, Non-negative Matrix Factorization, Link-Prediction
DOIs: 10.1109/MLSP.2012.6349745
Publication: Research - peer-review › Article in proceedings – Annual report year: 2012

String matching with variable length gaps
We consider string matching with variable length gaps. Given a string T and a pattern P consisting of strings separated by variable length gaps (arbitrary strings of length in a specified range), the problem is to find all ending positions of substrings in T that match P. This problem is a basic primitive in computational biology applications. Let m and n be the lengths of P and T, respectively, and let k be the number of strings in P. We present a new algorithm achieving time O(nlogk+m+a) and space O(m+A), where A is the sum of the lower bounds of the lengths of the gaps in P and a is the total number of occurrences of the strings in P within T. Compared to the previous results this bound essentially achieves the best known time and space complexities simultaneously. Consequently, our algorithm obtains the best known bounds for almost all combinations of m, n, k, A, and a. Our algorithm is surprisingly simple and straightforward to implement. We also present algorithms for finding and encoding the positions of all strings in P for every match of the pattern.

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling, Algorithms and Logic, Computer Science and Engineering, Department of Applied Mathematics and Computer Science, Cognitive Systems
Authors: Bille, P. (Intern), Gertz, I. L. (Intern), Vildhøj, H. W. (Intern), Wind, D. K. (Intern)
Pages: 25-34
Publication date: 2012
Main Research Area: Technical/natural sciences

Publication information
Journal: Theoretical Computer Science
Volume: 443
ISSN (Print): 0304-3975
Ratings: BFI (2018): BFI-level 2
BFI (2017): BFI-level 2
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 0.97 SJR 0.569 SNIP 1.006
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 0.623 SNIP 1.212 CiteScore 1
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 0.708 SNIP 1.228 CiteScore 1.08
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 0.739 SNIP 1.38 CiteScore 1.17
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 0.844 SNIP 1.288 CiteScore 1.16
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 0.81 SNIP 1.289 CiteScore 1.17
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.91 SNIP 1.329
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 0.948 SNIP 1.475
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.188 SNIP 1.638
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.997 SNIP 1.65
Scopus rating (2006): SJR 0.911 SNIP 1.49
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.821 SNIP 1.486
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.804 SNIP 1.366
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.936 SNIP 1.523
Scopus rating (2002): SJR 0.837 SNIP 1.358
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.934 SNIP 1.514
Scopus rating (2000): SJR 0.61 SNIP 1.343
Scopus rating (1999): SJR 0.519 SNIP 1.166
Original language: English
String matching, Variable length gaps, Algorithms
DOIs:
10.1016/j.tcs.2012.03.029
Source: dtu
Source-ID: n:oai:DTIC-ART:elsevier/365676320::16903
Publication: Research - peer-review › Journal article – Annual report year: 2012

Projects:

Statistical Models for Temporal Dynamics in Complex Networks

Department of Applied Mathematics and Computer Science
Period: 15/05/2014 → 18/07/2018
Number of participants: 3
Phd Student:
Wind, David Kofoed (Intern)
Supervisor:
Jørgensen, Sune Lehmann (Intern)
Main Supervisor:
Winther, Ole (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Forskningsrådsfinansiering
Project: PhD