David Earl Roberson - DTU Orbit (05/05/2019)

David Earl Roberson

Organisations

Postdoc, Department of Applied Mathematics and Computer Science
12/07/2017 → present
dero@dtu.dk
VIP

Algorithms and Logic
21/09/2017 → present
VIP

Postdoc, Department of Physics
23/01/2018 → 25/01/2019 Former
dero@fysik.dtu.dk
VIP

Quantum Physics and Information Technology
24/01/2018 → 26/02/2019 Former
VIP

Research outputs:

Quantum and non-signalling graph isomorphisms
We introduce the (G,H)-isomorphism game, a new two-player non-local game that classical players can win with certainty iff the graphs G and H are isomorphic. We then define quantum and non-signalling isomorphisms by considering perfect quantum and non-signalling strategies for this game. We prove that non-signalling isomorphism coincides with fractional isomorphism, giving the latter an operational interpretation. We show that quantum isomorphism is equivalent to the feasibility of two polynomial systems obtained by relaxing standard integer programs for graph isomorphism to Hermitian variables. Finally, we provide a reduction from linear binary constraint system games to isomorphism games. This reduction provides examples of quantum isomorphic graphs that are not isomorphic, implies that the tensor product and commuting operator frameworks result in different notions of quantum isomorphism, and proves that both relations are undecidable.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Algorithms and Logic, Polytechnic University of Catalonia, University of Copenhagen, Charles University, University College London, Nanyang Technological University
Pages: 289-328
Publication date: 1 May 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Combinatorial Theory. Series B
Volume: 136
ISSN (Print): 0095-8956
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: Entanglement, Fractional isomorphism, Graph isomorphism, Non-local games, Non-signalling, Quantum strategies
DOIs: 10.1016/j.jctb.2018.11.002
Source: Scopus
Source-ID: 85057881619
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review