Solving large nonlinear generalized eigenvalue problems from Density Functional Theory calculations in parallel
The quantum mechanical ground state of electrons is described by Density Functional Theory, which leads to large minimization problems. An efficient minimization method uses a self-consistent field (SCF) solution of large eigenvalue problems. The iterative Davidson algorithm is often used, and we propose a new algorithm of this kind which is well suited for the SCF method, since the accuracy of the eigensolution is gradually improved along with the outer SCF-iterations. Best efficiency is obtained for small-block-size iterations, and the algorithm is highly memory efficient. The implementation works well on both serial and parallel computers, and good scalability of the algorithm is obtained. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
Numerical Solution of Differential Algebraic Equations

General information
State: Published
Organisations: Scientific Computing, Department of Informatics and Mathematical Modeling
Authors: Thomsen, P. G. (Intern), Bendtsen, C. (Intern)
Publication date: 1999

Publication information
Original language: English
Main Research Area: Technical/natural sciences
BDF, Index, Index reduction, GERK, DAE’s, SDIRK
Source: orbit
Source-ID: 201045
Publication: Research - peer-review › Report – Annual report year: 1999

Numerical Solution of Differential Algebraic Equations: A Ph.D. Course

General information
State: Published
Organisations: Department of Energy Engineering, Department of Informatics and Mathematical Modeling
Authors: Wagner, F. J. (Intern), Hostrup, A. K. (Intern), Antonov, A. A. (Intern), Elmegaard, B. (Intern), Poulsen, M. Z. (Intern), Thomsen, P. G. (Intern), Bendtsen, C. (Intern)
Number of pages: 101
Publication date: 1999

Publication information
Original language: English
Main Research Area: Technical/natural sciences
Source: orbit
Source-ID: 175401
Publication: Research - peer-review › Report – Annual report year: 1999

Tadiff, a flexible C++ package for automatic differentiation

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Bendtsen, C. (Intern), Stauning, O. (Intern)
Number of pages: 32
Publication date: 1997
FADBAD, a flexible C++ package for automatic differentiation.

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Bendtsen, C. (Intern), Stauning, O. (Intern)
Number of pages: 33
Publication date: 1996

Implementation of QR up- and downdating on a massively parallel computer
We describe an implementation of QR up- and downdating on a massively parallel computer (the Connection Machine CM-200) and show that the algorithm maps well onto the computer. In particular, we show how the use of corrected semi-normal equations for downdating can be efficiently implemented. We also illustrate the use of our algorithms in a new LP algorithm.
Storskala inversionsalgoritmer

Department of Informatics and Mathematical Modeling
Period: 01/12/1998 → 20/01/2003
Number of participants: 8
Phd Student:
Berglund, Eva Ann-Charlotte (Intern)
Supervisor:
Bendtsen, Claus (Intern)
Jacobsen, Bo Holm (Ekstern)
Madsen, Kaj (Intern)
Main Supervisor:
Hansen, Per Christian (Intern)
Examiner:
Nielsen, Hans Bruun (Intern)
Mosegaard, Klaus (Intern)
Rojas Larrazabal, Marielba de la Caridad (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Samarbejdsaftalefinans
Project: PhD

Parallele numeriske algoritmer til løsning af systemer af sædvanlige differentialligninger

Department of Informatics and Mathematical Modeling
Period: 01/07/1993 → 04/12/1996
Number of participants: 5
Phd Student:
Bendtsen, Claus (Intern)
Supervisor:
Skelboe, Stig (Ekstern)
Main Supervisor:
Thomsen, Per Grove (Intern)
Examiner:
Houbak, Niels (Intern)
Söderlind, Gustaf (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Forskerakademiets Samfinansier
Project: PhD