Ependymal cilia beating induces an actin network to protect centrioles against shear stress

Multiciliated ependymal cells line all brain cavities. The beating of their motile cilia contributes to the flow of cerebrospinal fluid, which is required for brain homoeostasis and functions. Motile cilia, nucleated from centrioles, persist once formed and withstand the forces produced by the external fluid flow and by their own cilia beating. Here, we show that a dense actin network around the centrioles is induced by cilia beating, as shown by the disorganisation of the actin network upon impairment of cilia motility. Moreover, disruption of the actin network, or specifically of the apical actin network, causes motile cilia and their centrioles to detach from the apical surface of ependymal cell. In conclusion, cilia beating controls the apical actin network around centrioles; the mechanical resistance of this actin network contributes, in turn, to centriole stability.
Can we train a single deep learning model to detect and segment nuclei images acquired with any microscope or staining modality?

FastSME: faster and smoother manifold extraction from 3D stack

Towards Highly Accurate Coral Texture Images Classification Using Deep Convolutional Neural Networks and Data Augmentation
information about the global structure of the coral; 2) several species of coral have very similar characteristics; and 3) defining the spatial borders between classes is difficult as many corals tend to appear together in groups. For this reason, the classification of coral species has always required an aid from a domain expert. The objective of this paper is to develop an accurate classification model for coral texture images. Current datasets contain a large number of imbalanced classes, while the images are subject to inter-class variation. We have analyzed 1) several Convolutional Neural Network (CNN) architectures, 2) data augmentation techniques and 3) transfer learning. We have achieved the state-of-the-art accuracies using different variations of ResNet on the two current coral texture datasets, EILAT and RSMAS.

General information
State: Submitted
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, University of Granada, Virginia Commonwealth University
Authors: Gómez-Ríos, A. (Ekstern), Tabik, S. (Ekstern), Luengo, J. (Ekstern), Shihavuddin, A. (Intern), Krawczyk, B. (Ekstern), Herrera, F. (Ekstern)
Number of pages: 22
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information
Journal: Expert Systems with Applications
ISSN (Print): 0957-4174
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): SNIP 2.449 SJR 1.271 CiteScore 5.22
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.7 SJR 1.343 SNIP 2.463
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.473 SNIP 2.522 CiteScore 4.11
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.476 SNIP 2.564 CiteScore 3.63
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.305 SNIP 2.348 CiteScore 3.31
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.148 SNIP 2.419 CiteScore 3.38
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.113 SNIP 2.541 CiteScore 3.76
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.046 SNIP 1.807
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.922 SNIP 2.543
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.123 SNIP 2.203
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.021 SNIP 1.695
Scopus rating (2006): SJR 0.673 SNIP 1.354
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.683 SNIP 1.655
Scopus rating (2004): SJR 0.563 SNIP 1.79
Scopus rating (2003): SJR 0.479 SNIP 1.187
Calibrated mitotic oscillator drives motile ciliogenesis

Cell division and differentiation depend on massive and rapid organelle remodeling. The mitotic oscillator, centered on the cyclin-dependent kinase 1–anaphase-promoting complex/cyclosome (CDK1-APC/C) axis, spatiotemporally coordinates this reorganization in dividing cells. Here we discovered that nondividing cells could also implement this mitotic clocklike regulatory circuit to orchestrate subcellular reorganization associated with differentiation. We probed centriole amplification in differentiating mouse-brain multiciliated cells. These postmitotic progenitors fine-tuned mitotic oscillator activity to drive the orderly progression of centriole production, maturation, and motile ciliation while avoiding the mitosis commitment threshold. Insufficient CDK1 activity hindered differentiation, whereas excessive activity accelerated differentiation yet drove postmitotic progenitors into mitosis. Thus, postmitotic cells can redeploy and calibrate the mitotic oscillator to uncouple cytoplasmic from nuclear dynamics for organelle remodeling associated with differentiation.
Smooth 2D manifold extraction from 3D image stack

Three-dimensional fluorescence microscopy followed by image processing is routinely used to study biological objects at various scales such as cells and tissue. However, maximum intensity projection, the most broadly used rendering tool, extracts a discontinuous layer of voxels, obliviously creating important artifacts and possibly misleading interpretation. Here we propose smooth manifold extraction, an algorithm that produces a continuous focused 2D extraction from a 3D volume, hence preserving local spatial relationships. We demonstrate the usefulness of our approach by applying it to various biological applications using confocal and wide-field microscopy 3D image stacks. We provide a parameter-free ImageJ/Fiji plugin that allows 2D visualization and interpretation of 3D image stacks with maximum accuracy.

General information
State: Published
Organisations: PSL Research University, CNRS Centre National de la Recherche Scientifique
Authors: Shihavuddin, A. (Intern), Basu, S. (Ekstern), Rexhepaj, E. (Ekstern), Delestro, F. (Ekstern), Menezes, N. (Ekstern), Sigoillot, S. M. (Ekstern), Del Nery, E. (Ekstern), Selimi, F. (Ekstern), Spassky, N. (Ekstern), Genovesio, A. (Ekstern)
Publication date: 31 May 2017
mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis

Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.