Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products

Thai fermented fish products were screened for lactic acid bacteria capable of inhibiting Listeria sp. (Listeria innocua). Of 4150 assumed lactic acid bacteria colonies from MRS agar plates that were screened by an agar-overlay method 58 (1.4%) were positive. Forty four of these strains were further characterized and 43 strains were inhibitory against Listeria monocytogenes. The strains were inhibitory to other Gram- positive (lactic acid) bacteria probably because of production of bacteriocins. All 44 strains inhibited both Vibrio cholerae and Vibrio parahaemolyticus and 37 were inhibitory to a mesophilic fish spoilage bacterium tan Aeromonas sp.). Inhibition of Gram-negative bacteria was attributed to production of lactic acid. Most strains were identified as Lactobacillus spp., and all grew well at ambient temperatures (25-37 degrees C) and tolerated up to 6.5% NaCl. Glucose was fermented rapidly in laboratory media whereas pH decreased only very slowly in fish juice supplemented with 4% glucose and 3.5% NaCl or in a rice-fish mixture. Only four of 44 isolates could degrade and ferment complex carbohydrates such as rice, potatoes and maize starch. This indicates that other types of bacteria may be responsible for the rapid spontaneous fermentation of the products or that other yet-unknown factors ensure rapid fermentation. Overall anti-listerial lactic acid bacteria do occur in fermented fish products and the antibacterial activity against pathogenic bacteria indicates that they may be important in product safety. (C) 1998 Academic Press Limited

General information
State: Published
Organisations: National Institute of Aquatic Resources, Section for Aquatic Microbiology and Seafood Hygiene
Authors: Østergaard, A. (Intern), Embarek, P. K. B. (Intern), Wedell-Neergaard, C. (Ekstern), Huss, H. H. (Intern), Gram, L. (Intern)
Pages: 223-233
Publication date: 1998
Main Research Area: Technical/natural sciences

Publication information
Journal: Food Microbiology
Volume: 15
Issue number: 2
ISSN (Print): 0740-0020
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.31 SJR 1.702 SNIP 1.695
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.714 SNIP 1.776 CiteScore 4.24
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.548 SNIP 1.755 CiteScore 3.74
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.759 SNIP 1.85 CiteScore 3.81
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.618 SNIP 1.647 CiteScore 3.54
ISI indexed (2012): ISI indexed yes
Fermentation and spoilage of som fak, a Thai low-salt fish product

General information
State: Published
Organisations: National Institute of Aquatic Resources, Section for Aquatic Microbiology and Seafood Hygiene
Authors: Østergaard, A. (Intern), Embarek, P. K. B. (Intern), Yamprayoon, J. (Ekstern), Wedell-Neergaard, C. (Ekstern), Huss, H. H. (Intern), Gram, L. (Intern)
Pages: 105-112
Publication date: 1998
Main Research Area: Technical/natural sciences

Publication information
Journal: Tropical Science
Volume: 38
ISSN (Print): 0041-3291
Ratings:
Scopus rating (2010): SJR 0.127 SNIP 0.883
Scopus rating (2009): SJR 0.114 SNIP 0.247
Scopus rating (2008): SJR 0.113 SNIP 0.335
Scopus rating (2007): SJR 0.115 SNIP 0.097
Scopus rating (2006): SJR 0.204 SNIP 0.593
Scopus rating (2005): SJR 0.143 SNIP 0.363
Scopus rating (2004): SJR 0.15 SNIP 0.511
Scopus rating (2003): SJR 0.144 SNIP 0.705
Scopus rating (2002): SJR 0.254 SNIP 0.898
Projects:

Improved utilization of low-value fish
The specific objectives of this project were in three areas: 1. To examine and adapt traditional Asian preservation technologies for fish products. 2. To investigate and optimise the fermentation process used in traditional Asian fish products. 3. To study the composition and stability of lipids from low-value fish species. The results have identified potential new use of a large number of low-value fish species. The properties of Lactic Acid Bacteria (LAB) isolated from low salt fermented products have been studied and the capacity to ferment inulin from garlic was found to be an important criteria for selection of starter cultures, since garlic is added to most low-salt fermented products. The fatty acid profile from a great number of tropical fish has been determined. The stability of fish oil and the potential of spices as antioxydants has also been investigated.

National Institute of Aquatic Resources
Indian Council of Agricultural Research
Slipi Research Station for Marine Fisheries (SLIPI.AGR)
University Putra Malaysia
Norwegian Institute of Food, Fisheries and Aquaculture Research
University of the Philippines Visayas
National Aquatic Resources Agency
Fishery Technological Development Institute
Natural Resources Institute
Prince of Songkla University
Period: 01/01/1994 → 31/10/1997
Number of participants: 4
Project participant:
Embarek, Peter Karim Ben (Intern)
Østergaard, Anya (Intern)
Paludan-Müller, Christine (Intern)
Project Manager, organisational:
Huss, Hans Henrik (Intern)
Project