Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders

Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.

General information
Publication status: Published
Organisations: Research group for Molecular and Reproductive Toxicology, National Food Institute, Copenhagen Center for Health Technology
Pages: 253-272
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Archives of Toxicology
Volume: 93
Issue number: 2
ISSN (Print): 0340-5761
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: Anogenital distance, Endocrine disruptors, Reproduction, Risks assessment, Toxicology
Electronic versions:
Schwartz2019_Article_AnogenitalDistanceAsAToxicolog.pdf
DOIs:
10.1007/s00204-018-2350-5
A pragmatic approach for human risk assessment of chemical mixtures
Humans are continuously exposed to complex chemical mixtures from foods and the environment. Due to our inadequate understanding of mixture effects, tools to assess the combined risk of mixed chemical exposures have been difficult to develop. In recent years, regulatory authorities across the world have made considerable progress towards developing pragmatic frameworks to deal with combined exposure to multiple chemicals for risk assessment purposes. These approaches require a high level of information about chemical exposures and toxicities, information that often is lacking. We see this data gap as delaying urgently needed improvements in chemical safety. Herein, we present a pragmatic step-by-step procedure for mixture risk assessment and propose tools for grouping of chemicals. Until we have a better understanding of adverse outcome pathways, we suggest that grouping of chemicals for mixture risk assessment be based on integrated in vivo and in vitro data, read-across as well as computational methods such as QSAR models or integrative systems biology. These latter methods can be used to predict inherent hazards or modes/mechanisms of action and to group the chemicals in cases where no experimental data exist.

Distinct transcriptional profiles of the female, male and finasteride-induced feminized male anogenital region in rat fetuses
A short anogenital distance (AGD) in males is a marker for incomplete masculinization and a predictor of adverse effects on male reproductive health. For this reason, AGD is used to assess the endocrine disrupting potential of chemicals for risk assessment purposes. The molecular mechanisms underpinning this chemically induced shortening of the AGD, however, remains unclear. Although it is clear that AR-mediated signaling is essential, evidence also suggest the involvement of other signaling pathways. This study presents the first global transcriptional profile of the anogenital tissue in male rat fetuses with chemically induced short AGD, also including comparison to normal male and female control animals. The anti-androgenic drug finasteride (10mg/kg bw/day) was used to induce short AGD by exposing time-mated Sprague Dawley rats at gestation days (GD) 7-21. The AGD was 37% shorter in exposed male fetuses compared to control males at GD21. Transcriptomics analysis on anogenital tissues revealed a sexually dimorphic transcriptional profile. More than 350 genes were found to be differentially expressed between the three groups. The expression pattern of four genes of particular interest (Esr1, Padi2, Wnt2 and Sfrp4) was also tested by RT-qPCR analyses, indicating that estrogen and Wnt2 signaling play a role in the sexually dimorphic development of the anogenital region. Our transcriptomics profiles provide a stepping-stone for future studies aimed at characterizing the molecular events governing development of the anogenital tissues, as well as describing the detailed Adverse Outcome Pathways for short AGD; an accepted biomarker of endocrine effects for chemical risk assessment.
Workshop on the validation and regulatory acceptance of innovative 3R approaches in regulatory toxicology - Evolution versus revolution

At a joint workshop organized by RIVM and BfR, international experts from governmental institutes, regulatory agencies, industry, academia and animal welfare organizations discussed and provided recommendations for the development, validation and implementation of innovative 3R approaches in regulatory toxicology. In particular, an evolutionary improvement of our current approach of test method validation in the context of defined approaches or integrated testing strategies was discussed together with a revolutionary approach based on a comprehensive description of the physiological responses of the human body to chemical exposure and the subsequent definition of relevant and predictive in vitro, in chemico or in silico methods. A more comprehensive evaluation of biological relevance, scientific validity and regulatory purpose of new test methods and assessment strategies together with case studies that provide practical experience with new approaches were discussed as essential steps to build up the necessary confidence to facilitate regulatory acceptance.

General information
Publication status: Published
Pages: 1-11
Publication date: 2019
Peer-reviewed: Yes

Workshop on acceleration of the validation and regulatory acceptance of alternative methods and implementation of testing strategies

This report describes the proceedings of the BfR-RIVM workshop on validation of alternative methods which was held 23 and 24 March 2017 in Berlin, Germany. Stakeholders from governmental agencies, regulatory authorities, universities, industry and the OECD were invited to discuss current problems concerning the regulatory acceptance and implementation of alternative test methods and testing strategies, with the aim to develop feasible solutions. Classical validation of alternative methods usually involves one to one comparison with the gold standard animal study. This
approach suffers from the reductionist nature of an alternative test as compared to the animal study as well as from the animal study being considered as the gold standard. Modern approaches combine individual alternatives into testing strategies, for which integrated and defined approaches are emerging at OECD. Furthermore, progress in mechanistic toxicology, e.g. through the adverse outcome pathway approach, and in computational systems toxicology allows integration of alternative test battery results into toxicity predictions that are more fine-tuned to the human situation. The road towards transition to a mechanistically-based human-focused hazard and risk assessment of chemicals requires an open mind towards stepping away from the animal study as the gold standard and defining human biologically based regulatory requirements for human hazard and risk assessment.

General information
Publication status: Published
Organisations: Copenhagen Center for Health Technology, National Food Institute, Research group for Molecular and Reproductive Toxicology, National Institute of Public Health and the Environment, Utrecht University, Federal Institute for Risk Assessment, European Chemicals Agency, Cosmetics Europe – The Personal Care Association, BASF, European Commission Joint Research Centre Institute, Vrije Universiteit Brussel, SeCAM
Corresponding author: Piersma, A. H.
Pages: 62-74
Publication date: 1 Aug 2018
Peer-reviewed: Yes

Publication Information
Journal: Toxicology in Vitro
Volume: 50
ISSN (Print): 0887-2333
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
Original language: English
Electronic versions:
1_s2.0_S0887233318300651_main.pdf. Embargo ended: 02/03/2019
DOIs:
10.1016/j.tiv.2018.02.018
Source: Scopus
Source-ID: 85042856058
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review

Characterizing novel molecular mechanisms for short AGD – a biomarker of fetal testicular dysfunction

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology, French Institute of Health and Medical Research
Contributors: Schwartz, C. V. L., Vinggaard, A. M., Christiansen, S., Chalmel, F., Svingen, T.
Number of pages: 1
Publication date: 2018
Peer-reviewed: Yes
Event: Poster session presented at 20th European Testis Workshop (European Workshop on the Molecular and Cellular Endocrinology of the Testis), Obidos, Portugal.
Source: PublicationPreSubmission
Source-ID: 161892586
Research output: Contribution to conference › Poster – Annual report year: 2018 › Research › peer-review

Combination effects of pesticides on birth weight and metabolic programming in rat offspring
Risk assessment of pesticides is generally based on the no observed adverse effect levels (NOAELs) for single compounds. However, humans are typically exposed to a mixture of several pesticides. The objectives of the project were to investigate whether a mixture of environmentally relevant pesticides cause decreased birth weights at dose levels below NOAELs for the individual pesticides in rats, to evaluate whether the mixture effect is best predicted by the independent action or the dose-addition model, to investigate the influences of developmental pesticide exposure on metabolic programming of the offspring using biomarkers for obesity and type 2 diabetes, and to give input for regulatory considerations.

General information
Environmental toxicology: Pesticides

Pesticides are toxic substances that are deliberately released into our environment to kill or control living organisms. They have many beneficial qualities with regards to their intended use, but also carry with them potential harmful side effects for other living organisms that are inadvertently exposed, including humans. In this article, we will discuss some of the possible toxic effects they can have on male reproductive health. Of particular concern are pesticides with endocrine
disrupting properties, which have been shown to interfere with male reproductive development. Early life exposure can prevent proper masculinization, having permanent consequences for the offspring.

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology
Contributors: Svingen, T., Christiansen, S., Taxvig, C., Vinggaard, A. M.
Number of pages: 5
Pages: 624-628
Publication date: 2018

Environmental Toxicology: Plastics
Plastic is a general term for a diverse group of polymeric materials that are used in a plethora of products. They represent a major source of human exposure to endocrine disrupting chemicals, including phthalates, bisphenols and persistent organic pollutants (POPs). For humans, foods represent the main source of exposure, but common house dust can also be a significant source of exposure in small children.

Phthalates and bisphenol A can interfere with male reproductive development by inducing reproductive organ malformations and impaired sperm production. Also persistent halogenated chemicals may be intentionally or unintentionally present in plastics and migrate/leak to foods or the environment causing concern for male reproductive function.

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Research group for Analytical Food Chemistry, Copenhagen Center for Health Technology
Contributors: Boberg, J., Granby, K., Svingen, T., Vinggaard, A. M.
Number of pages: 5
Pages: 619-623
Publication date: 2018

Erratum to: The OECD validation program of the H295R steroidogenesis assay: Phase 3. Final inter-laboratory validation study
https://doi-org.proxy.findit.dtu.dk/10.1007/s11356-010-0396-x

In the original article wrong unites were quoted in Table 3 (page 508) and Table 4 (page 510) as well as in the paragraph
3.2 Core chemical exposure experiments on page 509. Also in paragraph 2.3 Selection and testing of chemicals the link to the Supplemental Materials (ESM) was missing. The correct versions of the tables and the paragraph as well as the ESM link are provided below.

General information
Publication status: Published
Organisations: Copenhagen Center for Health Technology, National Food Institute, Research group for Molecular and Reproductive Toxicology, Cardno ENTRIX, Inc., RWTH Aachen University, United States Environmental Protection Agency, Chemicals Evaluation and Research Institute, City University of Hong Kong, University of Saskatchewan, Research Triangle Park, Heidelberg University
Pages: 15265–15267
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Environmental Science and Pollution Research
Volume: 25
Issue number: 15
ISSN (Print): 0944-1344
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
Original language: English
DOIs: 10.1007/s11356-017-0321-7

Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review

Exposure to a glyphosate-based herbicide formulation, but not glyphosate alone, has only minor effects on adult rat testis
Glyphosate has been suggested to be an endocrine disrupting chemical capable of disrupting male reproduction. There are conflicting data, however, with studies reporting on effects from exposure to either glyphosate alone or to herbicide formulations, making comparisons difficult. We assessed rat testis histopathology and androgen function following two weeks exposure to either glyphosate at 2.5 and 25 mg/kg bw/day (5x and 50x Acceptable Daily Intake, ADI, respectively), or equivalent high dose of glyphosate in a herbicide formulation; Glyfonova. We observed no significant effects on testes or testosterone synthesis in rats exposed to glyphosate. Limited effects were observed in rats exposed to Glyfonova, with a small upregulation of the steroidogenic genes Cyp11a1 and Cyp17a1. We conclude that glyphosate alone has no effects on adult rat testis at exposure levels up to 25 mg/kg bw/day. Glyfonova induced only minor effects on steroidogenic gene expression, likely caused by additives other than glyphosate.

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology, Research Group for Gut Microbiology and Immunology
Number of pages: 7
Pages: 25-31
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Reproductive Toxicology
Volume: 82
ISSN (Print): 0890-6238
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
Original language: English
Keywords: Glyphosate, Testis, Androgens, Pesticides, Testosterone, Steroidogenesis, Toxicology
DOIs: 10.1016/j.reprotox.2018.09.008
Source: FindIt
Source-ID: 2439636413

Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review
PFHxS Causes Developmental Hypothyroxinemia Without Affecting Behavioral Tests in Rat Offspring

Introduction
Thyroid hormones (TH) are critical for mammalian brain development. In humans, low maternal serum thyroxine (T4) levels are associated with neurological deficiencies and cognitive impairment. Perfluorohexane sulfonate (PFHxS) is a widespread environmental contaminant found in human serum, tissues and milk. We have shown that PFHxS decrease serum thyroxine in pregnant rat dams and their offspring. Here, we further investigate effects on the thyroid system, neurodevelopment, and combination effects of PFHxS and a mixture of environmentally relevant endocrine disruptors.

Methods
Perfluorohexane sulfonate (PFHxS, 0, 0.05, 5 or 25 mg/kg/day with and without EDmix, a mixture of 12 endocrine disruptors e.g. phthalates, pesticides, UV-filters, Bisphenol A and butyl paraben) was administered (p.o.) to Wistar rat dams (n = 16-20/dose group) from gestation day (GD) 7 through postnatal day (PD) 22. Offspring were assessed in activity boxes and the radial arm maze.

Results/discussion
PFHxS not only decreased serum T4 levels in dams and offspring but in the high dose also reduced T3 to 84% of controls in both dams (PD 22) and pups (PD 16). The hypothalamic-pituitary-thyroid (HPT) axis was not activated based on lack of effect on serum TSH, thyroid gland histology, weight and thyroid gene expression levels. Developmental hypothyroxinemia did not appear to increase physical activity levels in young and adult offspring. However, the expected sex difference was absent on PD 115 in low dose PFHxS (0.05 mg/kg) and at high doses in combination with EDmix (5 mg/kg +EDmix and 25 mg/kg + EDmix). Slight effects on offspring learning and memory did not appear correlated to decreased TH levels during development.

Conclusions
PFHxS decreased circulating levels of T3 and T4 in pregnant rat dams and their offspring without apparent compensation by the HPT axis. The thyroid hormone disruption was not associated with detectable learning and memory deficits. Rather findings suggest that PFHxS may disrupt sexual differentiation of the brain. Standard behavioral assays appear insensitive to adverse effects on brain development caused by thyroid hormone disruption. Hence, there is a need for development of sensitive assays to protect human thyroid function. Does not reflect EPA policy.
Prediction of adverse male reproductive health effects by integrating in vitro data and physiologically-based kinetic modelling

Currently, ∼352 pesticides are approved within the EU, but knowledge concerning sensitive endocrine effects on male reproductive health is scarce. Thus, there is an urgent need to improve non-animal test strategies that can help in predicting pesticides for adverse effects on male reproductive health.

The development of the male reproductive system strongly depends on androgens produced by the fetal testes, and hence the fetus is a target for compounds capable of interfering with the synthesis of these hormones or by antagonizing the androgen receptor.

Our strategy combines androgen-related activity of pesticides on human cells with physiologically-based kinetic modeling. Here, in vitro data pinpoints to compounds with a potential in vivo activity by identifying their critical internal exposure, while the kinetic model simulates the maternal doses necessary to reach critical levels in the fetus. We have developed a proof of principle showing that adverse effects on anogenital distance in male offspring, which is a unique and non-invasive marker for male reproductive health effects in animals and humans, can be predicted for selected pesticides.

We investigated this strategy on 9 pesticides and selected 3 compounds – fludioxonil, cyprodinil and dimethomorph – for in vivo ‘validation’ of the alternative approach in rats. Predicted fetal levels were within a factor of 2 from measured concentrations, and all three compounds showed a shorthened AGD in vivo.

In conclusion, our approach can be used to avoid unnecessary animal testing and focus on compounds that most likely will produce in vivo activity.

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Research group for Analytical Food Chemistry, Copenhagen Center for Health Technology, Brunel University, Technical University of Denmark
Pages: S61-S61
Publication date: 2018
Peer-reviewed: Yes
An effect-directed strategy for characterizing emerging chemicals in food contact materials made from paper and board

Food contact materials (FCM) are any type of item intended to come into contact with foods and thus represent a potential source for human exposure to chemicals. Regarding FCMs made of paper and board, information pertaining to their chemical constituents and the potential impacts on human health remains scarce, which hampers safety evaluation. We describe an effect-directed strategy to identify and characterize emerging chemicals in paper and board FCMs. Twenty FCMs were tested in eight reporter gene assays, including assays for the AR, ER, AhR, PPARγ, Nrf2 and p53, as well as mutagenicity. All FCMs exhibited activities in at least one assay. As proof-of-principle, FCM samples obtained from a sandwich wrapper and a pizza box were carried through a complete step-by-step multi-tiered approach. The pizza box exhibited ER activity, likely caused by the presence of bisphenol A, dibutyl phthalate, and benzylbutyl phthalate. The sandwich wrapper exhibited AR antagonism, likely caused by abietic acid and dehydroabietic acid. Migration studies confirmed that the active chemicals can transfer from FCMs to food simulants. In conclusion, we report an effect-directed strategy that can identify hazards posed by FCMs made from paper and board, including the identification of the chemical(s) responsible for the observed activity.

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology, French Institute of Health and Medical Research
Contributors: Schwartz, C. V. L., Vinggaard, A. M., Christiansen, S., Chalmel, F., Svingen, T.
Number of pages: 2
Publication date: 2018
Peer-reviewed: Yes
Source: PublicationPreSubmission
Source-ID: 161892879
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2018 › Research › peer-review
Mycotoxins are fungi-born metabolites that can contaminate foods through mould-infected crops. They are a significant food/feed-safety issue across the globe and represent a substantial financial burden for the world economy. Moreover, with a changing climate and fungal biota, there is now much discussion about emerging mycotoxins that are measurable at significant levels in crops worldwide. Unfortunately, we still know very little about the bioavailability and toxic potentials of many of these less characterized mycotoxins, including the large family of enniatins. In this study, we present new occurrence data for enniatin A, A1, B, B1 and beauvericin in four Danish crops: oat, wheat, and barley from the 2010 harvest, and rye from 2011 harvest. The occurrence of the four enniatins were B > B1 > A1 > A. Enniatin B was detected in 100% of tested samples regardless of crop type. In addition to occurrence data, we report a proof-of-concept study using a human-relevant high-content hepatotoxicity, or “quadroprobe,” assay to screen mycotoxins for their cytotoxic potential. The assay was sensitive for most cytotoxic compounds in the 0.009–100 µM range. Among eight tested mycotoxins...
(enniatin B, beauvericin, altenurol, deoxynivalenol, aflatoxin B1, andrastin A, citrinin, and penicillic acid), enniatin B and beauvericin showed significant cytotoxicity at a concentration lower than that for aflatoxin B1, which is the archetypal acute hepatotoxic and liver-carcinogenic mycotoxin. Hence, the quadroprobe hepatotoxicity assay may become a valuable assessment tool for toxicity assessment of mycotoxins in the future.

General information
Publication status: Published
Organisations: National Food Institute, Research Group for Molecular Toxicology, Research group for Analytical Food Chemistry, Danish Veterinary and Food Administration
Pages: 1658–1664
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Environmental Toxicology
Volume: 32
Issue number: 5
ISSN (Print): 1520-4081
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.19 SJR 0.652 SNIP 0.717
Web of Science (2017): Impact factor 2.491
Web of Science (2017): Indexed yes
Original language: English
DOIs: 10.1002/tox.22367
Source: FindIt
Source-ID: 2344891751
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review

Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures
A woman's reproductive health and ability to have children directly affect numerous aspects of her life, from personal well-being and socioeconomic standing, to morbidity and lifespan. In turn, reproductive health depends on the development of correctly functioning ovaries, a process that starts early during fetal life. Early disruption to ovarian programming can have long-lasting consequences, potentially manifesting as disease much later in adulthood. A growing body of evidence suggests that exposure to chemicals early in life, including endocrine-disrupting chemicals, can cause a range of disorders later in life, such as those described in the ovarian dysgenesis syndrome hypothesis. In this Review, we discuss four specific time windows during which the ovary is particularly sensitive to disruption by exogenous insults: gonadal sex determination, meiotic division, follicle assembly and the first wave of follicle recruitment. To date, most evidence points towards the germ cell lineage being the most vulnerable to chemical exposure, particularly meiotic division and follicle assembly. Environmental chemicals and pharmaceuticals, such as bisphenols or mild analgesics (including paracetamol), can also affect the somatic cell lineages. This Review summarizes our current knowledge pertaining to environmental chemicals and pharmaceuticals, and their potential contributions to the development of ovarian dysgenesis syndrome. We also highlight knowledge gaps that need addressing to safeguard female reproductive health.

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology, University of Aberdeen
Pages: 400-414
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Nature Reviews. Endocrinology
Volume: 13
ISSN (Print): 1759-5029
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.44 SJR 5.462 SNIP 4.297
Web of Science (2017): Impact factor 20.265
Human biomonitoring in risk assessment: analysis of the current practice and 1st examples on the use of HBM in risk assessments of HBM4EU priority chemicals

Mechanisms of action involved in chemically induced effects on male reproductive health

Mellemkødet sladrer om skadelige kemikalier
Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro

Migration of chemicals from packaging materials to foods may lead to human exposure. Polyfluoroalkyl substances (PFAS) can be used in technical mixtures (TMs) for use in food packaging of paper and board, and PFAS have been detected in human serum and umbilical cord blood. The specific structures of the PFAS in TMs are often unknown, but polyfluorinated alkyl phosphate esters (PAPs) have been characterized in TMs, food packaging, and in food. PAPs can be metabolized into fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Some PFAS have endocrine activities, highlighting the need to investigate these effects. Herein, we studied the endocrine activity of less characterized PFAS, including short-chain PFCAs and FTOHs. PAPs, and TMs of unknown chemical composition. Long-chain PFCAs were also included. We applied seven assays covering effects on estrogen, glucocorticoid, androgen, and peroxisome proliferator-activated receptor (PPAR) activity, as well as steroidogenesis in vitro and ex vivo. In general, PAPs, FTOHs, TMs, and long-chain PFCAs showed estrogenic activity through receptor activation and/or increasing 17β-estradiol levels. Furthermore, short- and long-chain PFCAs activated PPARα and PPARγ. Collectively, this means that (i) PAPs, FTOHs, and PFCAs exhibit endocrine activity through distinct and sometimes different mechanisms, (ii) two out of three tested TMs exhibited estrogenic activity, and (iii) short-chain FTOHs showed estrogenic activity and short-chain PFCAs generally activate both PPARα and PPARγ with similar potency and efficacy as long-chain PFCAs. In conclusion, several new and divergent toxicological targets were identified for different groups of PFAS.
Intrauterine Exposure to Paracetamol and Aniline Impairs Female Reproductive Development by Reducing Follicle Reserves and Fertility

Studies report that fetal exposure to paracetamol/acetaminophen by maternal consumption can interfere with male reproductive development. Moreover, recent biomonitoring data report widespread presence of paracetamol in German and Danish populations, suggesting exposure via secondary (nonpharmaceutical) sources, such as metabolic conversion from the ubiquitous industrial compound aniline. In this study, we investigated the extent to which paracetamol and aniline can interfere with female reproductive development. Intrauterine exposure to paracetamol by gavage of pregnant dams resulted in shortening of the anogenital distance in adult offspring, suggesting that fetal hormone signaling had been disturbed. Female offspring of paracetamol-exposed mothers had ovaries with diminished follicle reserve and reduced fertility. Fetal gonads of exposed animals had also reduced gonocyte numbers, suggesting that the reduced follicle count in adults could be due to early disruption of germ cell development. However, ex vivo cultures of ovaries from 12.5 days post coitum fetuses showed no decrease in proliferation or expression following exposure to paracetamol. This suggests that the effect of paracetamol occurs prior to this developmental stage. Accordingly, using embryonic stem cells as a proxy for primordial germ cells we show that paracetamol is an inhibitor of cellular proliferation, but without cytotoxic effects. Collectively, our data show that intrauterine exposure to paracetamol at levels commonly observed in pregnant women, as well as its precursor aniline, may block primordial germ cell proliferation, ultimately leading to reduced follicle reserves and compromised reproductive capacity later in life.
Juvenile Male Rats Exposed to a Low-Dose Mixture of Twenty-Seven Environmental Chemicals Display Adverse Health Effects

Humans are exposed to a large number of environmental chemicals in their daily life, many of which are readily detectable in blood or urine. It remains uncertain if these chemicals can cause adverse health effects when present together at low doses. In this study we have tested whether a mixture of 27 chemicals administered orally to juvenile male rats for three months could leave a pathophysiological footprint. The mixture contained metals, perfluorinated compounds, PCB, dioxins, pesticides, heterocyclic amines, phthalate, PAHs and others, with a combined dose of 0.16 (Low dose), 0.47 (Mid dose) or 1.6 (High dose) mg/kg bw/day. The lowest dose was designed with the aim of obtaining plasma or urine concentrations in rats at levels approaching those observed in humans. Some single congeners were administered at doses representative of combined doses for chemical groups. With this baseline, we found effects on weight, histology and gene expression in the liver, as well as changes to the blood plasma metabolome in all exposure groups, including low-dose. Additional adverse effects were observed in the higher dosed groups, including enlarged kidneys and alterations to the metabolome. No significant effects on reproductive parameters were observed.

Late-life effects on testosterone production following in utero exposure to the pesticide fludioxonil

Late-life effects on testosterone production following in utero exposure to the pesticide fludioxonil
Multiple endocrine disrupting effects in rats perinatally exposed to butylparaben

Parabens comprise a group of preservatives commonly added to cosmetics, lotions and other consumer products. Butylparaben has estrogenic and anti-androgenic properties and is known to reduce sperm counts in rats following perinatal exposure. Whether butylparaben exposure can affect other endocrine sensitive endpoints, however, remains largely unknown. In this study, time-mated Wistar rats (n=18) were orally exposed to 0, 10, 100 or 500 mg/kg bw/day of butylparaben from gestation day 7 to pup day 22. Several endocrine-sensitive endpoints were adversely affected. In the two highest dose groups, the anogenital distance of newborn male and female offspring was significantly reduced, and in prepubertal females, ovary weights were reduced and mammary gland outgrowth was increased. In male offspring, sperm count was significantly reduced at all doses from 10 mg/kg bw/day. Testicular CYP19a1 (aromatase) expression was reduced in prepubertal, but not adult animals exposed to butylparaben. In adult testes, Nr5a1 expression was reduced at all doses, indicating persistent disruption of steroidogenesis. Prostate histology was altered at prepuberty and adult prostate weights were reduced in the high dose group. Thus, butylparaben exerted endocrine disrupting effects on both male and female offspring. The observed adverse developmental effect on sperm count at the lowest dose is highly relevant to risk assessment, as this is the lowest observed adverse effect level in a study on perinatal exposure to butylparaben.
library for GC-MS (GC-EI-QTOF MS) analysis and an in-house built library of accurate masses for substances known to be used in P&B packaging for UHPLC-QTOF analysis. Of 75 tentatively identified substances, 15 were initially selected for further testing in vitro; however, only seven were commercially available and subsequently tested in vitro and quantified. Of these seven, the identities of three pigments found in printing inks were confirmed by UHPLC tandem mass spectrometry (QqQ MS/MS). Two pigments had entries in the database, meaning that a material relevant accurate mass database can provide a fast tentative identification. Pure standards of the seven tentatively identified substances were tested in vitro but could not explain a significant proportion of the AhR-response in the extract. Targeted analyses of dioxins and PCBs, both well-known AhR agonists, was performed. However, the dioxins could explain approximately 3% of the activity observed in the pizza box extract indicating that some very AhR active substance(s) still remain to be identified in recycled low quality P&B.

General information
Publication status: Published
Organisations: National Food Institute, Research group for Analytical Food Chemistry, Research group for Food Production Engineering, Research Group for Molecular Toxicology, Fera Science Ltd.
Number of pages: 14
Pages: 1080-1093
Publication date: 2016
Peer-reviewed: Yes

Perfluorononanoic acid in combination with 14 chemicals exerts low-dose mixture effects in rats
Humans are simultaneously exposed to several chemicals that act jointly to induce mixture effects. At doses close to or higher than no-observed adverse effect levels, chemicals usually act additively in experimental studies. However, we are lacking knowledge on the importance of exposure to complex real-world mixtures at more relevant human exposure levels. We hypothesised that adverse mixture effects occur at doses approaching high-end human exposure levels. A mixture (Mix) of 14 chemicals at a combined dose of 2.5 mg/kg bw/day was tested in combination with perfluorononanoic acid (PFNA) at doses of 0.0125 (Low PFNA), 0.25 (Mid PFNA) and 5 (High PFNA) mg/kg bw/day by oral administration for 14 days in juvenile male rats. Indication of a toxicokinetic interaction was found, as simultaneous exposure to PFNA and the Mix caused a 2.8-fold increase in plasma PFNA concentrations at Low PFNA. An increase in testosterone and dihydrotestosterone plasma concentrations was observed for Low PFNA + Mix. This effect was considered non-monotonic, as higher doses did not cause this effect. Reduced LH plasma concentrations together with increased androgen concentrations indicate a disturbed pituitary-testis axis caused by the 15-chemical mixture. Low PFNA by itself increased the corticosterone plasma concentration, an effect which was normalised after simultaneous exposure to Mix. This combined with affected ACTH plasma concentrations and down-regulation of 11β HSD mRNA in livers indicates a disturbed pituitary-adrenal axis. In conclusion, our data suggest that mixtures of environmental chemicals at doses approaching high-end human exposure levels can cause a hormonal imbalance and disturb steroid hormones and their regulation. These effects may be non-monotonic and were observed at low doses. Whether this reflects a more general phenomenon that should be taken into consideration when predicting human mixture effects or represents a rarer phenomenon remains to be shown.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Division of Food Chemistry
Perinatal exposure to mixtures of endocrine disrupting chemicals reduces female rat follicle reserves and accelerates reproductive aging

Exposure to endocrine disrupting chemicals (EDCs) during development can have negative consequences later in life. In this study we investigated the effect of perinatal exposure to mixtures of human relevant EDCs on the female reproductive system. Rat dams were exposed to a mixture of phthalates, pesticides, UV-filters, bisphenol A, butyl-paraben, as well as paracetamol. The compounds were tested together (Totalmix) or in subgroups with anti-androgenic (AAmix) or estrogenic (Emix) potentials. Paracetamol was tested separately. In pre-pubertal rats, a significant reduction in primordial follicle numbers was seen in AAmix and PM groups, and reduced plasma levels of prolactin was seen in AAmix. In one-year-old animals, the incidence of irregular estrous cycles was higher after Totalmix-exposure and reduced ovary weights were seen in Totalmix, AAmix, and PM groups. These findings resemble premature ovarian insufficiency in humans, and raises concern regarding potential effects of mixtures of EDCs on female reproductive function.

General information
Publication status: Published
Organisations: National Food Institute, Research Group for Molecular Toxicology, Research Group for Reproductive Toxicology
Pages: 186–194
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Reproductive Toxicology
Volume: 61
ISSN (Print): 0890-6238
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.92 SJR 1.078 SNIP 1.001
Web of Science (2016): Impact factor 2.341
Web of Science (2016): Indexed yes
Original language: English
Keywords: Endocrine disruption, Anti-Androgen, Female Reproductive System, Ovarian Toxicology, Follicle, Estrous cycle, Reproductive senescence
DOIs:
10.1016/j.reprotox.2016.03.045
Source: FindIt
Source-ID: 2303316607
The risk of chemical cocktail effects and how to deal with the issue

General information
Publication status: Published
Organisations: National Food Institute, Research Group for Molecular Toxicology
Contributors: Svingen, T., Vinggaard, A. M.
Pages: 322-323
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Epidemiology & Community Health
Volume: 70
ISSN (Print): 0143-005X
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.74 SJR 1.849 SNIP 1.391
Web of Science (2016): Impact factor 3.608
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
jech_2015_206268.full.pdf
DOIs:
10.1136/jech-2015-206268
Source: FindIt
Source-ID: 2289419358

Transferring in vivo exposure into in vitro assays using silicone to assess the endocrine activity of POPs accumulated in human breast implants

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Environmental Chemistry, National Food Institute, Research group for Analytical Food Chemistry, Copenhagen Center for Health Technology
Contributors: Gilbert, D., Mayer, P., Pedersen, M., Vinggaard, A. M.
Pages: 93-93
Publication date: 2016

Host publication information
Title of host publication: SETAC Orlando - abstract book
Place of publication: Orlando, Florida
Publisher: Society of Environmental Toxicology and Chemistry
Article number: 326
Electronic versions:
Abstract book
Research output: Chapter in Book/Report/Conference proceeding » Conference abstract in proceedings – Annual report year: 2017 » Research » peer-review

Chemical cocktail effects

General information
Publication status: Published
Organisations: National Food Institute, Research Group for Molecular Toxicology
Contributors: Svingen, T., Vinggaard, A. M.
Number of pages: 1
Pages: 181-181
Publication date: 2015
Peer-reviewed: Yes
Endocrine activity of persistent organic pollutants accumulated in human silicone implants — Dosing in vitro assays by partitioning from silicone

Persistent organic pollutants (POPs) accumulated in human tissues may pose a risk for human health by interfering with the endocrine system. This study establishes a new link between actual human internal POP levels and the endocrine active dose in vitro, applying partitioning-controlled dosing from silicone to the H295R steroidogenesis assay: (1) Measured concentrations of POPs in silicone breast implants were taken from a recent study and silicone disks were loaded according to these measurements. (2) Silicone disks were transferred into H295R cell culture plates in order to control exposure of the adrenal cells by equilibrium partitioning. (3) Hormone production of the adrenal cells was measured as toxicity endpoint. 4-Nonylphenol was used for method development, and the new dosing method was compared to conventional solvent-dosing. The two dosing modes yielded similar dose-dependent hormonal responses of H295R cells. However, with the partitioning-controlled freely dissolved concentrations (Cfree) as dose metrics, dose–response curves were left-shifted by two orders of magnitude relative to spiked concentrations. Partitioning-controlled dosing of POPs resulted in up to 2-fold increases in progestagen and corticosteroid levels at Cfree of individual POPs in or below the femtomolar range. Silicone acted not only as source of the POPs but also as a sorption sink for lipophilic hormones, stimulating the cellular hormone production. Methodologically, the study showed that silicone can be used as reference partitioning phase to transfer in vivo exposure in humans (silicone implants) to in vitro assays (partition-controlled dosing). The main finding was that POPs at the levels at which they are found in humans can interfere with steroidogenesis in a human adrenocortical cell line.

General information
Publication status: Published
Organisations: National Food Institute, Department of Environmental Engineering, Environmental Chemistry, Research group for Analytical Food Chemistry, Research Group for Molecular Toxicology, University of Aarhus
Contributors: Gilbert, D., Mayer, P., Pedersen, M., Vinggaard, A. M.
Pages: 107-114
Publication date: 2015
Peer-reviewed: Yes
Exposure to perfluorononanoic acid combined with a low-dose mixture of 14 human-relevant compounds disturbs energy/lipid homeostasis in rats

Humans are constantly exposed to a significant number of compounds and many are readily detected in human body fluids. Worryingly, several of these compounds are either suspected to be, or have already been shown to be harmful to humans either individually or in combination. However, the potential consequences of low-dose exposure to complex mixtures remain poorly understood. We have profiled the effects on rat blood plasma and liver homeostasis using metabolomics and transcriptomics following 2-week exposure to either a mixture of 14 common chemicals (Mix), perfluorononanoic acid (PFNA) at low (0.0125 mg/kg/day) or mid (0.25 mg/kg/day) doses, or a combination of Mix and PFNA. In blood plasma, 63 and 64 metabolites were significantly changed upon exposure to Mix alone or PFNA + Mix, respectively. Twelve of the metabolites were identified and comprised mainly lipids, with various lipid classes differentially affected across study groups. In the liver, expression of 182 and 203 genes—mainly related to energy homeostasis and lipid metabolism—were differentially expressed upon exposure to PFNA alone or PFNA + Mix, respectively. In general, Mix alone affected lipid metabolism evident in blood plasma, whereas effects on lipid metabolism in the liver were mainly driven by PFNA. This study verifies that a chemical mixture given at high-end human exposure levels can affect lipid homeostasis and that the combined use of metabolomics and transcriptomics can provide complimentary information allowing for a detailed analysis of affected signaling pathways.
Mixture effects of chemicals 'The Cocktail Project' Fødevarekemisk indsats under Fødevareforlig II 2011-2015

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology, Group for Chemical Risk Assessment and GMO, Division of Risk Assessment and Nutrition, Research group for Analytical Food Chemistry, Technical University of Denmark
Number of pages: 78
Publication date: 2015

Publication information
Place of publication: Kgs. Lyngby, Denmark
Publisher: Technical University of Denmark (DTU)
Original language: English
Electronic versions:
Source: PublicationPreSubmission
Source-ID: 162440203
Research output: Book/Report → Report – Annual report year: 2015 → Commissioned

Mixture effects of twenty-seven environmental contaminants given to rats at doses comparable to human exposure

General information
Publication status: Published
Organisations: National Food Institute, Research group for Molecular and Reproductive Toxicology, Research group for Analytical Food Chemistry, Copenhagen Center for Health Technology, Technical University of Denmark, Copenhagen University Hospital
Number of pages: 1
Publication date: 2015
Peer-reviewed: Yes
Event: Poster session presented at 8th Copenhagen Workshop on Endocrine Disruptors - COW 2015, Copenhagen, Denmark.
Electronic versions:
COW2015_Poster_Svingen.pdf
Source: PublicationPreSubmission
Source-ID: 162337702
Research output: Contribution to conference → Poster – Annual report year: 2015 → Research → peer-review

Mixtures of environmentally relevant endocrine disrupting chemicals affect mammary gland development in female and male rats

Estrogenic chemicals are able to alter mammary gland development in female rodents, but little is known on the effects of anti-androgens and mixtures of endocrine disrupting chemicals (EDCs) with dissimilar modes of action. Pregnant rat dams
were exposed during gestation and lactation to mixtures of environmentally relevant EDCs with estrogenic, anti-androgenic or dissimilar modes of action (TotalMix) of 100-, 200- or 450-fold high end human intake estimates. Mammary glands of prepubertal and adult female and male offspring were examined. Oestrogens increased mammary outgrowth in prepubertal females and the mRNA level of matrix metalloproteinase-3, which may be a potential biomarker for increased outgrowth. Mixtures of EDCs gave rise to ductal hyperplasia in adult males. Adult female mammary glands of the TotalMix group showed morphological changes possibly reflecting increased prolactin levels. In conclusion both estrogenic and anti-androgenic chemicals given during foetal life and lactation affected mammary glands in the offspring.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Technical University of Denmark
Pages: 47-57
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Reproductive Toxicology
Volume: 54
ISSN (Print): 0890-6238
Ratings:
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.36 SJR 1.263 SNIP 1.057
Web of Science (2015): Impact factor 2.85
Web of Science (2015): Indexed yes
Original language: English
Keywords: Endocrine disrupter, Mammary gland, Mix, Oestrogens, Anti-androgens, Whole mount, Histology, Mmp
DOIs:
10.1016/j.reprotox.2014.09.016
Source: PublicationPreSubmission
Source-ID: 102965406
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review

Perinatal exposure to mixtures of anti-androgenic chemicals causes proliferative lesions in rat prostate
BACKGROUND:
Elevated levels of endogenous or exogenous estrogens during fetal life can induce permanent disturbances in prostate growth and predispose to precancerous lesions. Recent studies have indicated that also early anti-androgen exposure may affect prostate cancer risk.
METHODS:
We examined the influence of perinatal exposure to mixtures of anti-androgenic and estrogenic chemicals on prostate development. Wistar rats were exposed from gestation day 7 to postnatal day 22 to a mixture of 8 anti-androgenic compounds (AAMix), a mixture of four estrogenic compounds (EMix), or paracetamol or a mixture of all 13 compounds (TotalMix) in mixture ratios reflecting human exposure levels.
RESULTS:
Ventral prostate weights were reduced by the TotalMix and AAMix in pre-pubertal rats. Histological changes in prostate appeared with increasing age and indicated a shift from the normal age-dependent epithelial atrophy towards hyperplasia. These lesions showed similarities to pre-cancerous lesions in humans. Increased proliferation was observed already in pre-puberty and it was hypothesized that this could be associated with reduced ERβ signaling, but no clear conclusions could be made from gene expression studies on ERβ-related pathways. The influences of the estrogenic chemicals and paracetamol on prostate morphology were minor, but in young adulthood the estrogen mixture reduced ventral prostate mRNA levels of Igf1 and paracetamol reduced the mRNA level of Pbp3.
CONCLUSIONS:
Mixtures of endocrine disrupters relevant for human exposure was found to elicit persistent effects on the rat prostate following perinatal exposure, suggesting that human perinatal exposure to environmental chemicals may increase the risk of prostate cancer later in life. Prostate.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Copenhagen University Hospital
Number of pages: 15
Pages: 126-140
Publication date: 2015
Prenatal exposure to persistent organochlorine pollutants is associated with high insulin levels in 5-year-old girls

BACKGROUND:
Several persistent organochlorine pollutants (POPs) possess endocrine disrupting abilities, thereby potentially leading to an increased risk of obesity and metabolic diseases, especially if the exposure occurs during prenatal life. We have previously found associations between prenatal POP exposures and increased BMI, waist circumference and change in BMI from 5 to 7 years of age, though only among girls with overweight mothers.

OBJECTIVES:
In the same birth cohort, we investigated whether prenatal POP exposure was associated with serum concentrations of insulin and leptin among 5-year-old children, thus possibly mediating the association with overweight and obesity at 7 years of age.

METHODS:
The analyses were based on a prospective Faroese Birth Cohort (n=656), recruited between 1997 and 2000. Major POPs, polychlorinated biphenyls (PCBs), \(p,p' \)-dichlorodiphenyldichloroethylene (DDE) and hexachlorobenzene (HCB), were measured in maternal pregnancy serum and breast milk. Children were followed-up at the age of 5 years where a non-fasting blood sample was drawn; 520 children (273 boys and 247 girls) had adequate serum amounts available for biomarker analyses by Luminex® technology. Insulin and leptin concentrations were transformed from continuous to binary variables, using the 75th percentile as a cut-off point. Multiple logistic regression was used to investigate associations between prenatal POP exposures and non-fasting serum concentrations of insulin and leptin at age 5 while taking into account confounders.

RESULTS:
Girls with highest prenatal POP exposure were more likely to have high non-fasting insulin levels (PCBs 4th quartile: OR=3.71; 95% CI: 1.36, 10.01. DDE 4th quartile: OR=2.75; 95% CI: 1.09, 6.90. HCB 4th quartile: OR=1.98; 95% CI: 1.06, 3.69) compared to girls in the lowest quartile. No significant associations were observed with leptin, or among boys. A mediating effect of insulin or leptin on later obesity was not observed.

CONCLUSION:
These findings suggest, that for girls, prenatal exposure to POPs may play a role for later development of metabolic diseases by affecting the level of insulin.

General information
Publication status: Published
Organisations: National Food Institute, Research Group for Molecular Toxicology, University of Southern Denmark, Hvidovre Hospital, Faroese Hospital System
Number of pages: 7
Pages: 407-413
Publication date: 2015
Peer-reviewed: Yes
Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions

In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or 'housekeeping') gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a, Rps18, Rps29, Sdha, Tbp and Ubc) across several juvenile and adult rat tissues (liver, adrenal, prostate, fat pad, testis and ovaries), both under normal conditions and following exposure to various chemicals during development. Employing NormFinder and BestKeeper softwares, we found Hprt and Sdha to be amongst the most stable genes across normal and manipulated tissues, with several others also being suitable for most tissues. Tbp and B2m displayed highest variability in transcript levels between tissues and developmental stages. It was also observed that the reference genes were most unstable in liver and testis following toxicological exposure. For future studies, we propose the use of more than one verified reference gene and the continuous monitoring of their suitability under various experimental conditions, including toxicological studies, based on changes in threshold (Ct) values from cDNA samples having been reverse-transcribed from a constant input concentration of RNA.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment
Contributors: Svingen, T., Letting, H., Hadrup, N., Hass, U., Vinggaard, A. M.
Number of pages: 15
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: PeerJ
Issue number: 3
Article number: e855
ISSN (Print): 2167-8359
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.1 SJR 1.095 SNIP 0.859
Web of Science (2015): Impact factor 2.183
Original language: English
Electronic versions:
2015_Svingen_et_al_PeerJ_1_.pdf
DOIs:
10.7717/peerj.855
URLs:
https://peerj.com/articles/855/
Source: PublicationPreSubmission
Source-ID: 107113577
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review

A computational approach to mechanistic and predictive toxicology of pesticides
Emerging challenges of managing and interpreting large amounts of complex biological data have given rise to the growing field of computational biology. We investigated the applicability of an integrated systems toxicology approach on five selected pesticides to get an overview of their modes of action in humans, to group them according to their modes of action, and to hypothesize on their potential effects on human health. We extracted human proteins associated to prochloraz, tebuconazole, epoxiconazole, procymidine, and mancozeb and enriched each protein set by using a high confidence human protein interactome. Then, we explored modes of action of the chemicals, by integrating protein-
disease information to the resulting protein networks. The dominating human adverse effects affected were reproductive
disorders followed by adrenal diseases. Our results indicated that prochloraz, tebuconazole, and procymidone exerted
their effects mainly via interference with steroidogenesis and nuclear receptors. Prochloraz was associated to a large
number of human diseases, and together with tebuconazole showed several significant associations to Testicular Dysgenesis Syndrome. Mancozeb showed a differential mode of action, involving inflammatory processes. This method provides an efficient way of overviewing data and grouping chemicals according to their mode of action and potential human adverse effects. Such information is valuable when dealing with predictions of mixture effects of chemicals and may contribute to the development of adverse outcome pathways.

Applicability of Computational Systems Biology in Toxicology

Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the
antithesis of the reductionist approach, integrates information about individual components of a biological system. In
integrative systems biology, large data sets from various sources and databases are used to model and predict effects of
chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important
pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical
literature search. However, computational systems biology offers more advantages than providing a high-throughput
literature search; it may form the basis for establishment of hypotheses on potential links between environmental
chemicals and human diseases, which would be very difficult to establish experimentally. This is possible due to the
existence of comprehensive databases containing information on networks of human protein–protein interactions and
protein–disease associations. Experimentally determined targets of the specific chemical of interest can be fed into these
networks to obtain additional information that can be used to establish hypotheses on links between the chemical and
human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test
the established hypotheses. Here, we describe how and why to apply an integrative systems biology method in the
hypothesis-generating phase of toxicological research.
Are Structural Analogues to Bisphenol A Safe Alternatives?

Background: Bisphenol A (BPA) is a chemical with widespread human exposure suspected of causing low-dose effects. Thus, a need for developing alternatives to BPA exists. Structural analogues of BPA have already been detected in foods and humans. Due to the structural analogy of the alternatives, there is a risk of effects similar to BPA.

Objectives: The aim was to elucidate and compare the hazards of bisphenol B (BPB), bisphenol E (BPE), bisphenol F (BPF), bisphenol S (BPS) and 4-cumylphenol (HPP) to BPA.

Methods: In vitro studies on steroidogenesis, receptor activity, and biomarkers of effect, as well as Quantitative Structure-Activity Relationship (QSAR) modeling.

Results: All test compounds caused the same qualitative effects on estrogen receptor and androgen receptor activities, and most of the alternatives exhibited potencies within the same range as BPA. Hormone profiles for the compounds indicated a specific mechanism of action on steroidogenesis which generally lead to decreased androgen, and increased estrogen and progestagen levels. Differential effects on corticosteroid synthesis were observed suggesting a compound-specific mechanism. Overall, BPS was less estrogenic and antiandrogenic than BPA, but BPS showed the largest efficacy on 17α-hydroxyprogesterone (17α-OH progesterone). Finally, there were indications of DNA damage, carcinogenicity, oxidative stress, effects on metabolism, and skin sensitization of one or more of the test compounds.

Conclusions: Interference with the endocrine system was the predominant effect of the test compounds. A substitution of BPA with these structural analogues should be carried out with caution.

Compounds in food packaging materials - toxicological profiling of knowns and unknowns

Food contact materials (FCMs) are sources of food contamination and human chemical exposure. Some chemicals in these materials are known to cause adverse effects, but many are poorly characterized for their potential toxicological hazards making risk assessment a challenge. The aim of the project was to obtain knowledge on the potential hazards...
posed by chemicals present in FCMs through examining compounds with known usages or suspected of being used in these materials, namely bisphenol A (BPA), BPA analogues and fluorinated substances. Furthermore, we developed a strategy to identify problematic compounds present in these materials. Specific focus was placed on in vitro endpoints assessing endocrine activity. BPA, five BPA analogues, and 19 fluorinated substances including fluorochemical containing technical mixtures (TMs) were investigated. The in vitro assays included the androgen receptor (AR), estrogen receptor (ER), aryl hydrocarbon receptor, retinoic acid receptor, glucocorticoid receptor, p53, and nuclear factor (erythroid-derived 2)-like 2 reporter gene assays, and the H295R steroidogenesis assay. The FCM strategy was a step-by-step procedure in which extracts from FCMs of paper and board were tested in vitro, active extracts were fractionated and tested in vitro, tentative identification was performed in active fractions, and tentatively identified compounds were tested in vitro and quantified in the extract. BPA analogues generally led to similar estrogenic and antiandrogenic effects in vitro compared to BPA. However, the BPA analogue BPS caused less marked effects on most of these endpoints, but led to a more pronounced effects on progestagen levels compared to BPA. Likewise, the effects on corticoid levels in the H295R steroidogenesis assay differed between the six compounds. These data suggest that the tested analogues overall have similar effects on the parameters investigated, though some differed. Therefore based on the presented data, the BPA analogues may not be suitable BPA alternatives. The fluorinated chemicals exhibited endocrine activities distinct from one another, but subgroups of fluorinated chemicals had similar profiles. Polyfluoroalkyl phosphate ester surfactants (PAPs) generally decreased progestagen and androgen levels, fluorotelomer alcohols (FTOHs) generally increased ER activity, and long-chained perfluorinated alkyl carboxylic acids (PFCAs) generally increased 17β-estradiol levels. Two TMs caused estrogenicity in vitro, whereas none of the short-chained PFCAs caused effects. It is recommended to conduct further studies on polyfluorinated chemicals as well as TMs to obtain more information on the implications of these differences in effect. The developed FCM strategy proved useful for identifying potential problematic compounds in FCMs of paper and board. All extracts from FCMs led to effects in at least one of the applied in vitro assays and we successfully identified five causative agents in two FCMs when applying the full strategy. It is recommended to test more FCMs of paper and board with the strategy to obtain information on other potentially problematic compounds present in these materials. The presented data overall suggest that some compounds present in FCMs or suspected of being used can exert endocrine activities in vitro, though the implications of these findings with respect to effects in humans and exposure to humans remain largely unknown. Nevertheless, it is of concern that so many of the materials and compounds led to effects and calls for further studies to be conducted. The data obtained in this PhD can be used as a prioritization tool for these purposes.

General information

Publication status: Published

Organisations: National Food Institute, Division of Toxicology and Risk Assessment

Contributors: Rosenmai, A. K., Vinggaard, A. M., Taxvig, C.

Number of pages: 37

Publication date: 2014

Publication information

Place of publication: Søborg

Publisher: National Food Institute, Technical University of Denmark

ISBN (Electronic): 978-87-93109-29-2

Original language: English

Electronic versions:

- PHD_THESIS_ALL_INCLUDED.pdf

Research output: Book/Report ▶ Report – Annual report year: 2015 ▶ Research ▶ peer-review

Discovery and Early Clinical Development of 2-{6-[2-(3,5-Dichloro-4-pyridyl)acetyl]-2,3-dimethoxyphenoxy}-N-propylacetamide (LEO 29102), a Soft-Drug Inhibitor of Phosphodiesterase 4 for Topical Treatment of Atopic Dermatitis

Development of orally available phosphodiesterase 4 (PDE4) inhibitors as anti-inflammatory drugs has been going on for decades. However, only roflumilast has received FDA approval. One key challenge has been the low therapeutic window observed in the clinic for PDE4 inhibitors, primarily due to PDE4 mediated side effects. Here we describe our approach to circumvent this issue by applying a soft-drug concept in the design of a topically acting PDE4 inhibitor for treatment of dermatological diseases. We used a fast follower approach, starting from piclamilast. In particular, simultaneous introduction of 2'-alkoxy substituents and changing an amide to a keto linker proved to be beneficial when designing potential soft-drug candidates. This effort culminated in identification of LEO 29102 (20), a potent, selective, and soft-drug inhibitor with properties suitable for patient-friendly formulations giving efficient drug delivery to the skin. Compound 20 has reached phase 2 and demonstrated clinically relevant efficacy in the treatment of atopic dermatitis.

General information

Publication status: Published

Organisations: National Food Institute, Division of Toxicology and Risk Assessment

Pages: 5893-5903

Publication date: 2014

Peer-reviewed: Yes
Green Toxicology – Application of predictive toxicology
Humans are constantly challenged by exposure to a cocktail of chemicals that can have negative health effects, and fetuses and young children are particularly vulnerable. Therefore, we need safer chemicals in order to reduce any potential environmental and human hazards. A solid framework to design safer chemicals and to identify problematic compounds already in use such as industrial compounds, drugs, pesticides and cosmetics, is required. Green toxicology is the application of predictive toxicology to the production of chemicals with the specific intent of improving their design for hazard reduction. This objective is partly achieved through core principles of green chemistry. However, better utilization of existing predictive toxicological tools alongside new inventions is still required. For this, input from toxicologists early in the chemical enterprise is necessary to make informed choices on molecular design. Current tools, including (Quantitative) Structure-Activity Relationships ((Q)SARs) for predicting toxicity, Physiologically Based Kinetic (PBK) dynamic modeling for predicting absorption, distribution, metabolism and excretion, as well as human cell-based methods, deserve to be applied in chemical risk assessment to a greater extent than is currently the case. Greater focus on these tools, their strengths and weaknesses, should be part of chemistry training at the university level, thus ensuring constant focus on the issue and fostering new inventions into the future.

Late-life effects on rat reproductive system after developmental exposure to mixtures of endocrine disrupters.
This study examined late-life effects of perinatal exposure of rats to a mixture of endocrine-disrupting contaminants. Four groups of 14 time-mated Wistar rats were exposed by gavage from gestation day 7 to pup day 22 to a mixture of 13 anti-androgenic and estrogenic chemicals including phthalates, pesticides, u.v.-filters, bisphenol A, parabens, and the drug paracetamol. The groups received vehicle (control), a mixture of all 13 chemicals at 150-times (TotalMix150) or 450-times (TotalMix450) high-end human exposure, or 450-times a mixture of nine predominantly anti-androgenic chemicals (AAMix450). Onset of puberty and estrous cyclicity at 9 and 12 months of age were assessed. Few female offspring showed significantly regular estrus cyclicity at 12 months of age in the TotalMix450 and AAMix450 groups compared with controls. In 19-month-old male offspring, epididymal sperm counts were lower than controls, and in ventral prostate an overrepresentation of findings related to hyperplasia was observed in exposed groups compared with controls, particularly in the group dosed with anti-androgens. A higher incidence of pituitary adenoma at 19 months of age was found in males and females in the AAMix450 group. Developmental exposure of rats to the highest dose of a human-relevant mixture of endocrine disrupters induced adverse effects late in life, manifested as earlier female reproductive senescence, reduced sperm counts, higher score for prostate atypical hyperplasia, and higher incidence of pituitary tumors. These delayed effects highlight the need for further studies on the role of endocrine disrupters in hormone-related disorders in aging humans.
Low-dose effects of bisphenol A on early sexual development in male and female rats.

Bisphenol A (BPA) is widely detected in human urine and blood. BPA has been reported to impair many endpoints for reproductive and neurological development; however, it is controversial whether BPA has effects in the microgram per kilogram dose range. The aim of the current study was to examine the influence of BPA on early sexual development in male and female rats at dose levels covering both regulatory no observed adverse effect levels (NOAELs) (5 and 50 mg/kg bw per day) as well as doses in the microgram per kilogram dose range (0.025 and 0.25 mg/kg bw per day). Time-mated Wistar rats (n=22) were gavaged during pregnancy and lactation from gestation day 7 to pup day 22 with 0, 0.025, 0.25, 5 or 50 mg/kg bw per day BPA. From 0.250 mg/kg and above, male anogenital distance (AGD) was significantly decreased, whereas decreased female AGD was seen from 0.025 mg/kg bw per day and above. Moreover, the incidence of nipple retention in males appeared to increase dose relatedly and the increase was statistically significant at 50 mg/kg per day. No significant changes in reproductive organ weights in the 16-day-old males and females and no signs of maternal toxicity were seen. The decreased AGD at birth in both sexes indicates effects on prenatal sexual development and provides new evidence of low-dose adverse effects of BPA in rats in the microgram per kilogram dose range. The NOAEL in this study is clearly below 5 mg/kg for BPA, which is used as the basis for establishment of the current tolerable daily intake (TDI) by EFSA; thus a reconsideration of the current TDI of BPA appears warranted.
Polyfluorinated alkyl phosphate ester surfactants - current knowledge and knowledge gaps

Fluorochemicals are a diverse group of synthetically produced compounds with the unique ability to repel water as well as oil. This property makes them ideal for multiple purposes in a variety of consumer and industrial products. Fluorochemicals have been detected in the environment, as well as in human blood, urine and milk. Due to their long half-life in human beings, there is an increased risk that exposure to these compounds can cause adverse effects. However, except for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), there is a large data gap regarding toxicological information on fluorochemicals. Polyfluorinated alkyl phosphate ester surfactants (PAPs) belong to the group of polyfluorinated alkyl surfactants. They have been detected in indoor dust and are widely used in food-contact materials, from which they have the ability to migrate into food. Toxicological data on PAPs are very limited, but current studies indicate that some PAPs have the potential to interfere with sex hormone synthesis in vitro. Disturbance of the sex hormone balance in foetal life has been suggested to be an important mechanism involved in adverse effects on, for example, male reproductive health and development. The current lack of toxicological data on PAPs impairs the risk assessment of this group of compounds. However, until more toxicological data on PAPs are available, the limited data currently accessible give reason to believe that these compounds might have the ability to cause potentially adverse effects, as seen for other perfluorinated chemicals, including some metabolic products of PAPs.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment
Contributors: Taxvig, C., Rosenmai, A. K., Vinggaard, A. M.
Number of pages: 4
Pages: 41-44
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Basic & Clinical Pharmacology & Toxicology
Volume: 115
Issue number: 1
ISSN (Print): 1742-7835
Ratings:
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.11
Web of Science (2014): Impact factor 2.377
Web of Science (2014): Indexed yes
Original language: English
DOIs:
10.1111/bcpt.12208
Source: Findit
Source-ID: 261019733
Research output: Contribution to journal › Journal article – Annual report year: 2014 › Research › peer-review

A low dose chemical mixture modulates the effect of PFNA in male rats

Purpose: When mathematical models are applied for assessment of chemical mixture effects, assumptions of lack of synergy or potentiation have to be made; Thus joint effects of chemicals are anticipated not to be unexpectedly high. The present investigation was designed to test whether a chemical mixture at human relevant doses interacts with perfluorononanoic acid (PFNA) by synergy or potentiation.

Methods: Male rats were given PFNA at 0.0125, 0.25 or 5 mg/kg bw/day for 14 days with or without a mixture containing 12 endocrine disrupters (total dose 2.5 mg/kg bw/day), bergamottin from grapefruit juice (0.2 mg/kg bw/day), and glabridin from liquorice (0.3 mg/kg bw/day). Rats were examined pathologically, plasma hormones and mRNA levels of several enzymes were measured, and metabolomic profiling of plasma was performed.

Results and conclusion: High dose PFNA exhibited liver steatosis and effects on testes enzyme mRNA levels. These effects were similar both with and without mixture. In contrast, co-treatment with mixture increased both relative and absolute liver weights of the 5 mg/kg/day PFNA, suggesting that liver toxicity was exacerbated by the mixture.

These data suggest that a chemical mixture at a human relevant dose potentiates the response of the rat to PFNA, but not
Are structural analogues to bisphenol A a safe alternative?

Bisphenol A (BPA) is often used in polycarbonate plastics, coatings of food and drink cans, and in thermal papers. Foods are thought to be a major human exposure route and human biomonitoring data suggest widespread exposure.

BPA is suspected of contributing to effects such as increased birth weight, behavioral changes in children, cardiovascular disease, and diabetes. Regulatory initiatives and increased public awareness, related to the potential adverse effects of BPA, has led to an incitement to find alternative compounds. Structural analogues of BPA are available on the market, some of which are found in foods and have been measured in humans. Due to the structural analogy there is an inherent risk that these compounds may lead to similar effects as BPA.

The aim of this study was to characterize the toxicological profile of BPA and the five analogues using in vitro assays assessing effects on ER, AR, aryl hydrocarbon receptor (AhR), retinoic acid receptor (RAR) and glucocorticoid receptor (GR) activation, effects on steroidogenesis, potential to cause oxidative stress (Nrf2 assay) and genotoxic potential (P53 assay).

Overall the qualitative effects were similar for the BPs tested; however differences in quantitative effects were observed in some cases. All BPs showed antiandrogenic and estrogenic potential and potential to affect steroidogenesis. The site of interference in steroidogenesis appears specific. Results obtained from Nrf2, p53, and AhR reporter gene assays showed that some or all BPs have the potential to activate these assays at high concentrations (LOEC > 50 μM).
Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro.

Humans are concomitantly exposed to numerous chemicals. An infinite number of combinations and doses thereof can be imagined. For toxicological risk assessment the mathematical prediction of mixture effects, using knowledge on single chemicals, is therefore desirable. We investigated pros and cons of the concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) models. First we measured effects of single chemicals and mixtures thereof on steroid synthesis in H295R cells. Then single chemical data were applied to the models; predictions of mixture effects were calculated and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels. Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast, antagonism was observed for effects of Mixture 2 on this hormone. The mixtures contained chemicals exerting only limited maximal effects. This hampered prediction by the CA and IA models whereas the GCA model could be used to predict a full dose response curve. Regarding effects on progesterone and estradiol, some chemicals were having stimulatory effects whereas others had inhibitory effects. The three models were not applicable in this situation and no predictions could be performed.

Finally, the expected contributions of single chemicals to the mixture effects were calculated. Prochloraz was the predominant but not sole driver of the mixtures, suggesting that one chemical alone was not responsible for the mixture effects. In conclusion, the GCA model seemed to be superior to the CA and IA models for the prediction of testosterone effects. A situation with chemicals exerting opposing effects, for which the models could not be applied, was identified. In addition, the data indicate that in non-potency adjusted mixtures the effects cannot always be accounted for by single chemicals.
Dietary relevant mixtures of phytoestrogens inhibit adipocyte differentiation in vitro

Phytoestrogens (PEs) are naturally occurring plant components, with the ability to induce biological responses in vertebrates by mimicking or modulating the action of endogenous hormones. Single isoflavones have been shown to affect adipocyte differentiation, but knowledge on the effect of dietary relevant mixtures of PEs, including for instance lignans, is lacking. In the current study dietary relevant mixtures of isoflavones and their metabolites, lignans and their metabolites, coumestrol, and a mixture containing all of them, were examined for effects on adipogenesis in 3T3-L1 adipocytes, as well as tested for their PPARγ activating abilities. The results showed that mixtures of isoflavonoid parent compounds and metabolites, respectively, a mixture of lignan metabolites, as well as coumestrol concentration-dependently inhibited adipocyte differentiation. Furthermore, a mixture of isoflavonoid parent compounds, and a mixture of isoflavonoid metabolites were found to have PPARγ activating abilities. These results suggest that PEs can affect pathways known to play a role in obesity development, and indicate that the inhibitory effect on adipocyte differentiation does not appear to be strictly associated with PPARγ activation/inhibition. The current study support the hypothesis that compounds with endocrine activity can affect pathways playing a role in the development obesity and obesity related diseases.
Effects of perinatal ethinyl estradiol exposure in male and female Wistar rats

Perinatal exposure to endocrine disrupting chemicals with estrogenic activity can adversely affect reproductive development, but few studies evaluating estrogen-sensitive endpoints have been performed in Wistar rats. Therefore, time-mated Wistar rats (n=10) were gavaged during gestation and lactation with 0, 5, 15 or 50μg/kg bw/day of ethinyl estradiol. This potent estrogen was found to induce an increased number of nipples and reduced ovary weight in female offspring. Malformations of female genitalia were found in young as well as adult offspring, as an increased AGD was seen at birth and a deeper urethral slit length was seen in adulthood. In prepubertal male offspring, estrogen-regulated gene expression in ventral prostate was increased dose-dependently and a decreased ventral prostate weight was seen at 15μg/kg. Female external sexual characteristics and prostate development were found to be targets for exposure to estrogenic compounds and may be of interest in studies on estrogenic environmental compounds.

Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens

Dietary phytoestrogens may prevent certain human diseases, but endocrine activity has been reported in animal studies. Sprague-Dawley rats were exposed perinatally to a 1-, 10- or 100-fold “high human dietary intake” mixture of 12 phytoestrogens consisting of mainly the lignan secoisolarici resinol and the isoflavones genistein and daidzein. This mixture induced persistent adverse effects, as adult male mammary glands showed hypertrophic growth. A reduced anogenital distance in newborn males indicated an anti-androgenic mode of action. Testosterone levels, testis and prostate weights, and expression of selected genes in testis and prostate were unaffected. Decreased serum estradiol was seen in genistein-exposed dams. This study indicated adverse effects at high intake levels in rats, but does not provide evidence for risk of phytoestrogen-mediated endocrine disruption at normal human dietary consumption levels. Further studies are warranted to increase the knowledge upon which risk assessment on dietary phytoestrogen exposure
Fluorochemicals used in food packaging inhibit male sex hormone synthesis

Polyfluoroalkyl phosphate surfactants (PAPS) are widely used in food contact materials (FCMs) of paper and board and have recently been detected in 57% of investigated materials. Human exposure occurs as PAPS have been measured in blood; however knowledge is lacking on the toxicology of PAPS. The aim of this study was to elucidate the effects of six fluorochemicals on sex hormone synthesis and androgen receptor (AR) activation in vitro. Four PAPS and two metabolites, perfluorooctanoic acid (PFOA) and 8:2 fluorotelomer alcohol (8:2 FTOH) were tested. Hormone profiles, including eight steroid hormones, generally showed that 8:2 diPAPS, 8:2 monoPAPS and 8:2 FTOH led to decreases in androgens (testosterone, dehydroepiandrosterone, and androstenedione) in the H295R steroidogenesis assay. Decreases were observed for progesterone and 17-OH-progesterone as well. These observations indicated that a step prior to progestagen and androgen synthesis had been affected. Gene expression analysis of StAR, Bzrp, CYP11A, CYP17, CYP21 and CYP19 mRNA showed a decrease in Bzrp mRNA levels for 8:2 monoPAPS and 8:2 FTOH exposures indicating interference with cholesterol transport to the inner mitochondria. Cortisol, estrone and 17β-estradiol levels were in several cases increased with exposure. In accordance with these data CYP19 gene expression increased with 8:2 diPAPS, 8:2 monoPAPS and 8:2 FTOH exposures indicating that this is a contributing factor to the decreased androgen and the increased estrogen levels. Overall, these results demonstrate that fluorochemicals present in food packaging materials and their metabolites can affect steroidogenesis through decreased Bzrp and increased CYP19 gene expression leading to lower androgen and higher estrogen levels.
Identification of a Novel Androgen Receptor Mutation in a Family With Multiple Components Compatible With the Testicular Dysgenesis Syndrome

Context: Androgen signaling via the androgen receptor (AR) is essential for normal testis development and male reproductive functions. We describe a rare family with 3 males affected by a mild disorder of sex determination compatible with testicular dysgenesis syndrome (TDS), including subfertility, cryptorchidism, hypospadias, and testicular cancer, caused by a novel AR mutation. Objective: The aim of this study was to describe the phenotype of the affected males, characterize functionally the novel AR mutation, and discuss the significance of partial androgen insufficiency in the pathogenesis of TDS. Participants: The proband, his first cousin, and a nephew underwent a detailed clinical investigation including genetic tests, whereas four female members of the family were tested for the specific AR mutation. Results: A novel AR mutation, c.2214T>G;p.Ile738Met, was identified in the affected family members. Functional analysis of the mutation in a gene-reporter assay showed a 50% reduction in AR-induced transcriptional activity. The affected males had elevated LH and T in accordance with decreased AR signaling. The histology and immunohistochemical profile of the testis tissue from the 2 patients with testicular cancer showed features consistent with insufficient testis development and TDS. Conclusion: The presence of all hallmarks of TDS, including germ cell cancer, in a family with a novel AR mutation causing a partial decrease in AR function is in line with the concept that reduced androgen signaling may contribute to the development of TDS. It also seems consistent with the hypothesis that environmental factors interfering with this pathway can play a role in the pathogenesis of TDS.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Technical University of Denmark, Copenhagen University Hospital
Contributors: Lottrup, G., Jørgensen, A., Nielsen, J. E., Jørgensen, N., Duno, M., Vinggaard, A. M., Skakkebæk, N. E., Rajpert-De Meyts, E.
Pages: 2223-2229
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Clinical Endocrinology and Metabolism
Volume: 98
Issue number: 6
ISSN (Print): 0021-972X
Ratings:
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.62 SJR 3.152 SNIP 2.32
Web of Science (2013): Impact factor 6.31
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
DOIs:
10.1210/jc.2013-1278
Source: dtu
Source-ID: n:oai:DTIC-ART:highwire/387406608::28884
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review

In vitro–in vivo correlations for endocrine activity of a mixture of 5 currently used pesticides
Two pesticide mixtures consisting of three and five currently used pesticides, respectively, were investigated for potential endocrine disrupting effects. Mix 3 consisted of bitertanol, propiconazole, and cypermethrin and Mix 5 contained the same 3 pesticides plus malathion and terbuthylazine.
All five single pesticides and the two mixtures were tested in vitro in H295R cells for effects on steroidogenesis. All five pesticides individually and both mixtures affected steroidogenesis. The mixtures caused an increase in progesterone and a decrease in testosterone, and Mix 5 also increased estradiol, indicating increased aromatase activity.
The pesticide-mixtures were also investigated in pregnant rats dosed from gestational day 7 to 21, followed by examination of dams and fetuses. All 5 pesticides could be detected in the amniotic fluid, demonstrating exposure of the fetuses. Decreased estradiol and increased T4 levels were seen in dams exposed to Mix 5. Neither of the two mixtures showed any effects on fetal hormone levels, but Mix 5 did cause a significant increase in aromatase mRNA levels in adrenal glands from female fetuses. Overall, aromatase induction in adrenals was found for Mix 5 both in vitro and in vivo. However, the hormonal responses in vitro were only partly reflected in vivo, probably due to ADME interactions, as the amniotic pesticide levels were negatively affected by the number of compounds present in the mixtures. Nonetheless, the H295R assay gives hints on interference with steroidogenesis, and it is suggested that one underlying mechanism for these pesticides is disturbance of steroidogenic enzymes.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Aarhus University
Pages: S200-S200
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Toxicology Letters
Volume: 221
Issue number: Supplement
ISSN (Print): 0378-4274
Ratings:
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.56 SJR 1.092 SNIP 1.185
Web of Science (2013): Impact factor 3.355
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
DOIs: 10.1016/j.toxlet.2013.05.466
Source-ID: n::oai:DTIC-ART:elsevier/390568739::31181
Research output: Contribution to journal › Conference abstract in journal – Annual report year: 2013 › Research › peer-review

In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides
Two pesticide mixtures were investigated for potential endocrine activity. Mix 3 consisted of bitertanol, propiconazole, and cypermethrin, and Mix 5 included malathion and terbuthylazine in addition to the three pesticides in Mix 3. All five single pesticides and the two mixtures were investigated for their ability to affect steroidogenesis in vitro in H295R cells. The pesticides alone and both mixtures affected steroidogenesis with both mixtures causing increase in progesterone and decrease in testosterone. For Mix 5 an increase in estradiol was seen as well, indicating increased aromatase activity. The two mixtures were also investigated in pregnant rats dosed from gestational day 7 to 21, followed by examination of dams and fetuses. Decreased estradiol and reduced placental testosterone were seen in dams exposed to Mix 5. Also a significant increase in aromatase mRNA levels in female adrenal glands was found for Mix 5. However, either of the two mixtures showed any effects on fetal hormone levels in plasma or testis, or on anogenital distance. Overall, potential aromatase induction was found for Mix 5 both in vitro and in vivo, but not for Mix 3, an effect likely owed to terbuthylazine in Mix 5. However, the hormonal responses in vitro were only partly reflected in vivo, probably due to some toxicokinetic issues, as the pesticide levels in the amniotic fluid also were found to be negatively affected by the number of compounds present in the mixtures. Nonetheless, the H295R assay gives hints on conceivable interference with steroidogenesis, thus generating hypotheses on in vivo effects.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Aarhus University
Pages: 757-766
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Toxicology and Applied Pharmacology
Volume: 272
Levels of Pesticides and Their Metabolites in Wistar Rat Amniotic Fluids and Maternal Urine upon Gestational Exposure.

Concentrations of pesticides and selected metabolites in rat urine and amniotic fluid were determined as biomarker upon oral administration of Wistar rats to two pesticide mixtures consisting of three to five pesticides (bitertanol, propiconazole, cypermethrin, malathion, and terbutylazine). The pesticides and their metabolites were found in rat amniotic fluid and urine, generally in dose-response concentrations in relation to dosage. The measurement of the substances in the amniotic fluid indicated that the fetus was exposed to the pesticides as well as their metabolites. Moreover, the pesticides detected in urine demonstrated the exposure as well as the ability of the rat to excrete these compounds.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment
Pages: 2271-2281
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: International Journal of Environmental Research and Public Health
Volume: 10
Issue number: 6
ISSN (Print): 1661-7827
Ratings:
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.62 SJR 0.827 SNIP 1.347
Web of Science (2013): Impact factor 1.993
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
Keywords: Pesticides, Gestational exposure, In vivo experiment, Wistar rats
Electronic versions:
ijerph-10-02271
DOIs:
10.3390/ijerph10062271
URLs:
http://www.mdpi.com/1660-4601/10/6/2271
Source: dtu
Source-ID: n::oai:DTIC-ART:pubmed/387720797::29933
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review

Non-monotonous dose–response curves observed for some endpoints, after pre- and postnatal exposure of rats to the fungicide epoxiconazole

General information
Predictive value of cell assays for developmental toxicity and embryotoxicity of conazole fungicides.

This paper evaluates in vivo predictability of a battery of in vitro tests covering developmental toxicity and embryotoxicity of five widely used conazole fungicides. The conazoles were investigated in the embryonic stem cell test, and data were compared to in vivo embryotoxicity data. The same conazoles were evaluated on the basis of data from a battery of cell assays for endocrine activity, including assays for AR, ER, AhR, and sex hormone synthesis, and data were compared to in vivo developmental toxicity data. Overall, the ranking of the five conazole fungicides based on in vitro data were in reasonably good agreement with available in vivo effects. Ketoconazole and epoxiconazole are the most potent embryotoxic compounds, whereas prochloraz belongs to the most potent developmental toxicants. In conclusion, a rough prediction of the ranking of these conazole fungicides for in vivo toxicity data was possible by a holistic evaluation of data from a panel of cell-based assays.
Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring

Thyroid disrupting chemicals can potentially disrupt brain development. Two studies investigating the effect of the antibacterial compound triclosan on thyroxine (T4) levels in rats are reported. In the first, Wistar rat dams were gavaged with 75, 150 or 300 mg triclosan/kg bw/day throughout gestation and lactation. Total T4 serum levels were measured in dams and offspring, and all doses of triclosan significantly lowered T4 in dams, but no significant effects on T4 levels were seen in the offspring at the end of the lactation period. Since this lack of effect could be due to minimal exposure through maternal milk, a second study using direct per oral pup exposure from postnatal day 3–16 to 50 or 150 mg triclosan/kg bw/day was performed. This exposure pointed to significant T4 reductions in 16 day old offspring in both dose groups. These results corroborate previous studies showing that in rats lactational transfer of triclosan seems limited. Since an optimal study design for testing potential developmental neurotoxicants in rats, should include exposure during both the pre- and postnatal periods of brain development, we suggest that in the case of triclosan, direct dosing of pups may be the best way to obtain that goal. © 2013 Elsevier Ltd. All rights reserved.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment
Contributors: Petersen, M. A., Boberg, J., Vinggaard, A. M., Christiansen, S., Hass, U.
Pages: 534–540
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Food and Chemical Toxicology
Volume: 59
ISSN (Print): 0278-6915
Ratings:
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.26 SJR 1.005 SNIP 1.515
Web of Science (2013): Impact factor 2.61
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
Keywords: Triclosan, Rat, Thyroxine (T4), Developmental, Thyroid disrupting chemical (TDC)
DOIs:
10.1016/j.fct.2013.06.050
Source: dtu
Source-ID: u::8371
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review

Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides

The present study investigated whether a mixture of low doses of five environmentally relevant endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, would cause adverse developmental toxicity effects in rats. In rat dams, a significant increase in gestation length was seen, while in male offspring increased nipple retention and increased incidence and severity of genital malformations were observed. Severe mixture effects on gestation length, nipple retention and genital malformations were seen at dose levels where the individual pesticides caused no or smaller effects when given alone. Generally, the mixture effect predictions based on dose-additivity were in good agreement with the observed effects. The results indicate that there is a need for modification of risk assessment procedures for pesticides, in order to take account of the mixture effects and cumulative intake, because of the potentially serious impact of mixed exposure on development and reproduction in humans.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Division of Food Chemistry, Department of Informatics and Mathematical Modeling, DTU Data Analysis
Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation

Eleven environmental relevant chemicals were investigated for their ability to affect adipogenesis in vitro, biomarker release from adipocytes and PPARα and γ activation. We found that butylparaben stimulated adipogenesis in 3T3-L1 adipocytes and increased release of leptin, adiponectin and resistin from the cells. Butylparaben activated PPARγ as well, which may be a mediator of the adipogenic effect. Polychlorinated biphenyl (PCB)153 also stimulate adipogenesis and biomarker release, but did not affect PPARs. The data indicates that PPARγ activating chemicals often stimulate adipocyte differentiation although PPARγ activation is neither a requirement nor a guarantee for stimulation. Four out of the eleven chemicals (bisphenol A, mono-ethylhexyl phthalate, butylparaben, PCB 153) caused increased adipogenesis. The release of adipocyte-secreted hormones was sometimes but not always correlated with the effect on adipocyte differentiation. Eight chemicals were able to cause increased leptin release. These findings strengthen the hypothesis that chemicals can interfere with pathways related to obesity development.
Fluorochemicals used in food packaging inhibit male sex hormone synthesis

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Division of Food Chemistry, University of Copenhagen
Contributors: Rosenmai, A. K., Nielsen, F. K., Pedersen, M., Hadrup, N., Trier, X., Christensen, J. H., Vinggaard, A. M.
Number of pages: 1
Publication date: 2012
Peer-reviewed: Yes
Event: Poster session presented at ILSI Europe 5th International Symposium on Food Packaging, Berlin, Germany.
Electronic versions: 13.pdf
Research output: Contribution to conference > Poster – Annual report year: 2012 > Research > peer-review

Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides
There is growing concern of permanent damage to the endocrine and nervous systems after developmental exposure to endocrine disrupting chemicals. In this study the permanent reproductive and neurobehavioral effects of combined exposure to five endocrine disrupting pesticides, epoxiconazole, mancozeb, prochloraz, tebuconazole and procymidone, were examined. Pregnant and lactating rat dams were dosed with a mixture of the five pesticides at three different doses, or with the individual pesticides at one of two doses. Adverse effects were observed in young and adult male offspring from the group exposed to the highest dose of the mixture. These included reduced prostate and epididymis weights, increased testes weights, altered prostate histopathology, increased density of mammary glands, reduced sperm counts, and decreased spatial learning. As no significant effects were seen following single compound exposure at the doses included in the highest mixture dose, these results indicate cumulative adverse effects of the pesticide mixture.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment
Pages: 237-250
Publication date: 2012
Peer-reviewed: Yes
Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats

Diisononyl phthalate (DINP) is a plasticizer abundantly used in consumer products as a substitute for other plasticizers prohibited in certain products due to reproductive toxicity. As anti-androgenic effects of DINP are suspected, DINP effects on reproduction and sexually dimorphic behavior were studied. Pregnant Wistar rats were gavaged from gestation day 7 to postnatal day (PND) 17 with vehicle, 300, 600, 750 or 900mg DINP/kg bw/day. In fetal testes histopathological effects typical of phthalates were observed. In male offspring, DINP caused increased nipple retention, reduced anogenital distance, reduced sperm motility and increased sperm count. DINP affected spatial learning as female offspring performed better than controls and similarly to control males in the Morris Water Maze, indicating masculinization of behavior in DINP exposed females. These results show that DINP causes anti-androgenic effects on reproductive development, though less potent than DEHP, DBP and BBP, and further safety evaluation of DINP appears warranted.

The OECD validation program of the H295R steroidogenesis assay: Phase 3. Final inter-laboratory validation study

In response to increasing concerns regarding the potential of chemicals to interact with the endocrine system of humans and wildlife, various national and international programs have been initiated with the aim to develop new guidelines for the screening and testing of these chemicals in vertebrates. Here, we report on the validation of an in vitro assay, the H295R steroidogenesis assay, to detect chemicals with the potential to inhibit or induce the production of the sex steroid hormones testosterone (T) and 17β-estradiol (E2) in preparation for the development of an Organization for Economic Cooperation and Development (OECD) test guideline. A previously optimized and pre-validated protocol was used to assess the potential of 28 chemicals of diverse structures and properties to validate the H295R steroidogenesis assay. These chemicals are comprised of known endocrine-active chemicals and “negative” chemicals that were not expected to have effects on the targeted endpoints, as well as a number of test chemicals with unknown modes of action at the level of the steroidogenic pathway. A total of seven laboratories from seven countries participated in this effort. In addition to effects on hormone production, confounding factors, such as cell viability and possible direct interference of test substances with antibody-based hormone detection assays, were assessed. Prior to and during the conduct of exposure
experiments, each laboratory had to demonstrate that they were able to conduct the assay within the margin of predefined performance criteria. With a few exceptions, all laboratories met the key quality performance parameters, and only 2% and 7% of all experiments for T and E2, respectively, were excluded due to exceedance of these parameters. Of the 28 chemicals analyzed, 13 and 14 tested affected production of T and E2, respectively, while 11 and 8 did not result in significant effects on T and E2 production, respectively. Four and six chemicals produced ambiguous results for effects on T and E2 production, respectively. However, four of these cases each for T and E2 were associated with only one laboratory after a personnel change occurred. Significant interference of test chemicals with some of the antibody-based hormone detection systems occurred for four chemicals. Only one of these chemicals, however, significantly affected the ability of the detection system to categorize the chemical as affecting E2 or T production. With one exception, the H295R steroidogenesis assay protocol successfully identified the majority of chemicals with known and unknown modes of interaction as inducers or inhibitors of T and E2 production. Thus it can be considered a reliable screen for chemicals that can alter the production of sex steroid hormones. One of the remaining limitations associated with the H295R steroidogenesis assay protocol is the relatively small basal production of E2 and its effect on quantifying the decreased production of this hormone with regard to the identification of weak inhibitors. An initial comparison of the data produced in this study with those from in vivo studies from the literature demonstrated the potential of the H295R steroidogenesis assay to identify chemicals affecting hormone homeostasis in whole organisms. Particularly promising was the lack of any false negatives during the validation and the very low number of false positives (1 out of 28 chemicals for each T and E2). Based on the results obtained during this validation study and the accordingly revised test protocols, an OECD draft test guideline was developed and submitted to the OECD working group of the national coordinators of the test guidelines program (WNT) for comments in December 2009.

A prevalidation transferability study of the GreenScreen HC GADD45a-GFP assay with S9.
Effects of Nutrition Relevant Mixtures of Phytoestrogens on Steroidogenesis, Aromatase, Estrogen, and Androgen Activity

Phytoestrogens (PEs) are naturally occurring plant components produced in a large range of plants. They can induce biologic responses in vertebrates by mimicking or modulating the action or production of endogenous hormones. This study examined mixtures of 12 food relevant PEs for effects on steroid hormone production, aromatase activity, estrogenic activity, and for interaction with the androgen receptor. The results show that a mixture of all tested PEs increased estradiol production and decreased testosterone production in H295R human adrenal corticocarcinoma cells, indicating an induced aromatase activity. Furthermore, exposure of the H295R cells to isoflavonoids caused a decrease in testosterone production, and various mixtures of PEs significantly stimulated MCF-7 human breast adenocarcinoma cell growth and induced aromatase activity in JEG-3 choriocarcinoma cells. The estrogenic effect in the MCF7 cells of the isoflavonoid mixture and coumestrol was supported by an observed increase in progesterone receptor protein expression as well as a decreased ER expression. Overall, the results support that nutrition-relevant concentrations of PEs both alone and in mixtures possess various endocrine disrupting effects, all of which need to be considered when assessing the effects on human health.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute
Pages: 122-131
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Nutrition and Cancer
Volume: 62
Issue number: 1
ISSN (Print): 0163-5581
Ratings:
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.842 SNIP 0.815
Web of Science (2010): Indexed yes
Original language: English
DOIs:
10.1080/01635580903191577
Source: orbit
Source-ID: 265634
Research output: Contribution to journal › Journal article – Annual report year: 2010 › Research › peer-review

Endocrine disruptive effects in vitro of conazole antifungals used as pesticides and pharmaceutical

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute, University of Southern Denmark
Contributors: Kjærstad, M. B., Taxvig, C., Nellemann, C. L., Vinggaard, A. M., Andersen, H. R.
Pages: 573-582
Publication date: 2010
Synergistic Disruption of External Male Sex Organ Development by a Mixture of Four Antiandrogens

By disrupting the action of androgens during gestation, certain chemicals present in food, consumer products and the environment can induce irreversible demasculinisation and malformations of sex organs among male offspring. However, the consequences of simultaneous exposure to such chemicals are not well described, especially when they exert their actions by differing molecular mechanisms. Objectives: To fill this gap, we investigated the effects of mixtures of a widely used plasticizer, di(2-ethylhexyl) phthalate (DEHP), two fungicides present in food, vinclozolin and prochloraz, and a pharmaceutical, finasteride, on landmarks of male sexual development in the rat, including changes in anogenital distance, retained nipples, sex organ weights and malformations of genitalia. These chemicals were chosen because they disrupt androgen action according to differing mechanisms of action. Results: Strikingly, the effect of combined exposure to the selected chemicals on malformations of external sex organs was synergistic, and the observed responses were greater than would be predicted from the toxicities of the individual chemicals. In relation to other hallmarks of disrupted male sexual development, including changes in anogenital distance, retained nipples, and sex organ weights, the combined effects were dose additive. When the four chemicals were combined at doses equal to no-observed-adverse-effect levels estimated for nipple retention, significant reductions in anogenital distance were observed in male offspring. Conclusions: Since unhindered androgen action is essential for human male development in foetal life, these findings are highly relevant to human risk assessment. Evaluations that ignore the possibility of combination effects may lead to considerable underestimations of risks associated with exposures to chemicals that disrupt male sexual differentiation.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute, University of London
Contributors: Christiansen, S., Scholze, M., Dalgaard, M., Vinggaard, A., Petersen, M. A., Kortenkamp, A., Hass, U.
Pages: 1839-1846
Publication date: 2009
Peer-reviewed: Yes
Do parabens have the ability to interfere with steroidogenesis?

The effects of ethyl and butyl paraben on steroidogenesis were evaluated in rats exposed in utero. Pregnant Wistar rats were dosed from gestational day (GD) 7 to GD 21, followed by examination of the dams, and the fetuses. Additionally, both parabens were tested in vitro in the H295R steroidogenesis assay and in the T-screen assay, the later to test for their ability to act as thyroid hormone receptor agonist or antagonist. In the in utero exposure toxicity study, neither ethyl nor butyl paraben showed any treatment-related effects on testosterone production, anogenital distance, or testicular histopathology. However, butyl paraben caused a significant decrease in the mRNA expression level of estradiol receptor-beta in fetal ovaries, and also significantly decreased the mRNA expression of steroidogenic acute regulatory protein and peripheral benzodiazepine receptor in the adrenal glands. In vitro butyl paraben increased the proliferation of the GH3 cells in the T-Screen assay, thereby acting as a weak thyroid hormone receptor agonist. In the adrenal H295R steroidogenesis assay both ethyl and butyl paraben caused a significant increase in the progesterone formation. Overall, the results indicate that butyl paraben might have the ability to act as endocrine disruptor by interfering with the transport of cholesterol to the mitochondrion, thereby interfering with steroidogenesis, but also that the two tested parabens do not show clear endocrine disrupting capabilities in our short-term in vivo experiment.

Do azole fungicides possess an endocrine disrupting hazard?

The effects of ethyl and butyl paraben on steroidogenesis were evaluated in rats exposed in utero. Pregnant Wistar rats were dosed from gestational day (GD) 7 to GD 21, followed by examination of the dams, and the fetuses. Additionally, both parabens were tested in vitro in the H295R steroidogenesis assay and in the T-screen assay, the later to test for their ability to act as thyroid hormone receptor agonist or antagonist. In the in utero exposure toxicity study, neither ethyl nor butyl paraben showed any treatment-related effects on testosterone production, anogenital distance, or testicular histopathology. However, butyl paraben caused a significant decrease in the mRNA expression level of estradiol receptor-beta in fetal ovaries, and also significantly decreased the mRNA expression of steroidogenic acute regulatory protein and peripheral benzodiazepine receptor in the adrenal glands. In vitro butyl paraben increased the proliferation of the GH3 cells in the T-Screen assay, thereby acting as a weak thyroid hormone receptor agonist. In the adrenal H295R steroidogenesis assay both ethyl and butyl paraben caused a significant increase in the progesterone formation. Overall, the results indicate that butyl paraben might have the ability to act as endocrine disruptor by interfering with the transport of cholesterol to the mitochondrion, thereby interfering with steroidogenesis, but also that the two tested parabens do not show clear endocrine disrupting capabilities in our short-term in vivo experiment.
Endocrine disrupting properties in vivo of widely used azole fungicides

The endocrine-disrupting potential of four commonly used azole fungicides, propiconazole, tebuconazole, epoxiconazole and ketoconazole, were tested in two short-term in vivo studies. Initially, the antiandrogenic effects of propiconazole and tebuconazole (50, 100 and 150 mg/kg body weight/day each) were examined in the Hershberger assay. In the second study, pregnant Wistar rats were dosed with propiconazole, tebuconazole, epoxiconazole or ketoconazole (50 mg/kg/day each) from gestational day (GD) 7 to GD 21. Caesarian sections were performed on dams at GD 21. Tebuconazole and propiconazole demonstrated no antiandrogenic effects at doses between 50 and 150 mg/kg body weight/day in the Hershberger assay. In the in utero exposure toxicity study, ketoconazole, a pharmaceutical to treat human fungal infections, decreased anogenital distance and reduced testicular testosterone levels, demonstrating a demasculinizing effect on male fetuses. Tebuconazole, epoxiconazole and ketoconazole induced a high-frequency of post-implantation loss, and both ketoconazole and epoxiconazole caused a marked increase in late and very late resorptions. Overall the results show that many of the commonly used azole fungicides act as endocrine disruptors in vivo, although the profile of action in vivo varies. As ketoconazole is known to implicate numerous endocrine-disrupting effects in humans, the concern for the effects of the other tested azole fungicides in humans is growing.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute
Pages: 170-176
Publication date: 2008
Peer-reviewed: Yes

Publication information
Journal: International Journal of Andrology
Volume: 31
Issue number: 2
ISSN (Print): 0105-6263
Ratings:
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.316 SNIP 0.92
Web of Science (2008): Indexed yes
Original language: English
DOI:
10.1111/j.1365-2605.2007.00838.x
Source: orbit
Source-ID: 233718
Research output: Contribution to journal › Journal article – Annual report year: 2008 › Research › peer-review

Higher levels of ethyl paraben and butyl paraben in rat amniotic fluid than in maternal plasma after subcutaneous administration.

Parabens are a group of antimicrobial preservatives widely used in cosmetics, pharmaceuticals, and in foods. Previous in vitro and in vivo studies have shown weak estrogenic effects of some parabens. Thus, especially, exposure of fetus and infants via the mother is a matter of concern. In order to obtain more knowledge about the distribution of ethyl paraben and butyl paraben in pregnant rats and pups after perinatal exposure, the presented study was designed. The data show response and distribution of ethyl paraben and butyl paraben in maternal rat plasma, pools of amniotic fluids, placenta, whole-body fetuses, and in fetal liver after dosing of dams with 100, 200, and 400 mg/kg body weight (bw)/day from gestational day 7 to 21. After cesarean section of dams, the fluids and tissues were collected, deconjugated, and purified by solid-phase extraction, and ethyl paraben and butyl paraben were analyzed by liquid chromatography-tandem mass spectrometry. Markedly higher levels of ethyl paraben compared to butyl paraben were found in all fluids and tissues. Both ethyl paraben and butyl paraben in maternal plasma, livers, and whole-body tissues from fetus seemed to be saturated after dosing with >or= 100 mg/kg bw/day, while both compounds were excreted into amniotic fluid in a dose-dependent manner. Significant difference was found between the level of ethyl paraben in maternal plasma and amniotic fluid after dosing with 200 mg/kg bw/day as well as between the levels of butyl paraben in maternal plasma and amniotic fluid after dosing with 100, 200, and 400 mg/kg bw/day.
Dysgenesis and histological changes of genitals and perturbations of gene expression in male rats after in utero exposure to antiandrogen mixtures

We investigated the ability of a mixture of three androgen receptor antagonists to induce disruption of male sexual differentiation after perinatal exposure. The aim was to assess whether the joint effects of vinclozolin, flutamide, and procyemidone can be predicted based on dose-response data of the individual chemicals. Chemicals were administered orally to pregnant Wistar rats from gestational day 7 to postnatal day 16. Changes in reproductive organ weights and of androgen-regulated gene expression in prostates from male rat pups were chosen as end points for extensive dose-response studies. With all end points, the joint effects of the three antiandrogens were dose additive. Histological evaluations showed that dysgenesis and hypoplasia of prostates, seminal vesicles, and epididymis were seen with the highest mixture doses. No changes were observed in any single-compound low-dose group for these lesions, nor were there histopathological changes in the testes. Pronounced dysgenesis of external genitals was observed with all doses of the mixture, and severe dysogenesis was seen with a mixture for which the individual compounds caused no effects. A combination of doses of each chemical that on its own did not produce significant reductions in the weights of seminal vesicles and PBP C3 expression induced a marked mixture effect. Thus, antiandrogens cause additive effects on end points of various molecular complexities such as alterations at the morphological and the molecular level. Exposure to antiandrogens, which appears to exert only small effects when judged on a chemical-by-chemical basis, may induce marked responses in concert with, possibly unrecognized, similarly acting chemicals.
Effects of azole fungicides on the function of sex and thyroid hormones
Azole-fungicides are frequently used in Denmark. Epoxiconazole, propiconazole, and tebuconazole had endocrine disrupting properties in cell based assays. In rats, epoxiconazole and tebuconazole increased gestational length, maternal progesterone level, and masculinized female-offspring. Besides, tebuconazole caused feminization of male-offspring. Similar effects were previously demonstrated for prochloraz. The results indicate that azole-fungicides in general have endocrine disrupting properties.

Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole
The triazole fungicides tebuconazole and epoxiconazole were investigated for reproductive toxic effects after exposure during gestation and lactation. Rats were dosed with epoxiconazole (15 or 50 mg/kg bw/day) or tebuconazole (50 or 100 mg/kg bw/day) during pregnancy from gestational day (GD) 7 and continued during lactation until postnatal day (PND) 16. Some dams were randomly chosen for cesarean section at GD 21 to evaluate effects on sexual differentiation in the fetuses. Other dams delivered normally, and the pups were examined (e.g., anogenital distance [AGD] and hormone levels) at birth, at PND 13 or PND 16, and semen quality was assessed in adults. Both tebuconazole and epoxiconazole affected reproductive development in the offspring after exposure in utero. Both compounds virilized the female offspring as shown by an increased AGD PND 0. Furthermore, tebuconazole had a feminizing effect on male offspring as shown by increased nipple retention. This effect was likely caused by the reduced testosterone levels seen in male fetuses. Tebuconazole increased the testicular concentrations of progesterone and 17 alpha-hydroxyprogesterone in male fetuses, indicating a direct impact on the steroid synthesis pathway in the Leydig cells. The high dose of epoxiconazole had marked fetotoxic effects, while the lower dose caused increased birth weights. The increased birth weights may be explained by a marked increase in testosterone levels in dams during gestation. Common features for azole fungicides are that they increase gestational length, virilize female pups, and affect steroid hormone levels in fetuses and/or dams. These effects strongly indicate that one major underlying mechanism for the endocrine-disrupting effects of azole fungicides is disturbance of key enzymes like CYP17 involved in the synthesis of steroid hormones.
In vitro and in vivo screening of azole fungicides for antiandrogenic effects

In general, azole fungicides have a low acute toxicity, but we have only little knowledge about their potential health risks at low chronic exposures. Previously we have shown that prochloraz has multiple potential mechanisms of action in cell-based assays, and prochloraz possessed antiestrogenic and antiandrogenic effects both in vitro and in vivo. Two other azole fungicides, tebuconazole and epoxiconazole, have now been investigated for antiandrogenic effects in vitro and in vivo as well. The fungicides were screened in two well-established cell assays, including testing for agonistic and antagonistic effects on AR in transfected CHO cells, using an AR reporter gene assay. The compounds were also analyzed for effects on steroidogenesis in H295R cells, a human adrenocortical carcinoma cell line, used to detect effects on steroid production. In vitro tebuconazole and epoxiconazole proved to be antagonists of the AR, and in the H295R cell assay, they were able to inhibit testosterone and estradiol levels, and increase progesterone levels. In an in vivo study, designed to test for developmental effects on rat offspring after prenatal exposure, the effects on hormone levels in male fetuses and morphological signs of feminization of the male offspring were investigated. Tebuconazole caused an increase in testicular 17alpha-hydroxyprogesterone and progesterone levels, and a decrease in testosterone levels in male fetuses. Epoxiconazole had no effect on any of the measured hormone levels. Furthermore, tebuconazole increased the AGD in female pups and resulted in an increased number of nipples in male pups, a tendency that was also seen for epoxiconazole, though it was not statistically significant. In conclusion the results obtained in vitro are in good agreement with the effects observed in vivo. Tebuconazole showed antiandrogenic effects both in vitro and in vivo. Antiandrogenic effects were also seen for epoxiconazole in vitro, however the dominating effect observed in vivo was a high frequency of stillbirths at the highest dose.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute
Publication date: 2007
Peer-reviewed: No
Event: Poster session presented at 4th Copenhagen Workshop on Endocrine Disrupters, Copenhagen, Denmark.
Source: orbit
Source-ID: 233774
Research output: Contribution to conference › Poster – Annual report year: 2007 › Research

The OECD validation program of the H295R steroidogenesis assay for the identification of in vitro inhibitors and inducers of testosterone and estradiol production. Phase 2: Inter-laboratory pre-validation studies

Background, Goals and Scope. In response to concerns that have been raised about chemical substances that may alter the function of endocrine systems and result in adverse effects on human health, an OECD initiative was undertaken to develop and validate in vitro and in vivo assays to identify chemicals that may interfere with endocrine systems of vertebrates. Here we report on studies that were conducted to develop and standardize a cell-based screening assay using the H295R cell line to prioritize chemicals that may act on steroidogenic processes in humans and wildlife. These studies are currently ongoing as part of the 'Special Activity on the Testing and Assessment of Endocrine Disruptors' within the OECD Test Guidelines Program to review, develop, standardize, and validate a number of in vitro and in vivo toxicological assays for testing and assessment of chemicals concerning their potential to interact with the endocrine system of vertebrates. Study Design. Six laboratories from five countries participated in the pre-validation studies. Each laboratory tested the effects of three model chemicals on the production of testosterone (T) and estradiol (E2) using the H295R Steroidogenesis Assay. Chemicals tested were well described inducers or inhibitors of steroidogenic pathways (forskolin, prochloraz and fadrozole). All experiments were conducted in 24 well plates following standard protocols. Six different doses per compound were analyzed in triplicate per plate. A quality control (QQ) plate was run in conjunction with the chemical exposure plate to account for inter-assay variation. Each chemical exposure was conducted two or three times. Results. All laboratories successfully detected increases and/or decreases in hormone production by H295R cells after exposure to the different model compounds and there was good agreement in the pattern of response for all groups. Forskolin increased both T and E2 while fadrozole and prochloraz decreased production of both hormones. All chemicals affected hormone production in a close-dependent manner with the exception of fadrozole which caused maximum inhibition of E2 at the two least concentrations tested. Some inter-laboratory differences were noted in the alteration of hormone production measured in chemically exposed cells. However, with the exception of the production of T measured at one laboratory in cells exposed to forskolin, the EC(50)s calculated were comparable (coefficients of variation 34-49%) for all hormones. Discussion and Perspectives. The results indicated that the H295R Steroidogenesis Assay protocol was robust, transferable and reproducible among all laboratories. However, in several instances that were primarily related to one laboratory there were unexplained minor uncertainties related to the inter-laboratory hormone production variation.
Based on the findings from this Phase 2 prevalidation study, the H295R Steroidogenesis Assay protocol is currently being refined. The next phase of the OECD validation program will test the refined protocol among the same group of laboratories using an extended set of chemicals (similar to 30) that will include positive and negative chemical controls as well as a broad spectrum of different potential inducers and inhibitors of steroidogenic pathways.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment
Pages: 23-30
Publication date: 2007
Peer-reviewed: Yes

Publication information
Journal: Environmental Science and Pollution Research
Volume: 14
Issue number: 1
ISSN (Print): 0944-1344
Ratings:
Scopus rating (2007): SJR 0.818 SNIP 0.978
Web of Science (2007): Indexed yes
Original language: English
Keywords: sex steroid, testosterone, validation, transferability, endocrine disruption, OECD, steroidogenesis, H295R, hormone production, estradiol

Diisobutyl phthalate has comparable anti-androgenic effects to di-n-butyl phthalate in fetal rat testis
Phthalates are widely used as plasticizers in various consumer products and building materials. Some of the phthalates are known to interfere with male reproductive development in rats, and di-n-butyl phthalate (DBP), diethylhexyl phthalate (DEHP) and butyl benzyl phthalate (BBP) were recently banned for use in toys in the EU mainly due to their reproductive toxicity. Diisobutyl phthalate (DiBP) has similar structural and application properties as DBP and is being used as a substitute for DBP. However, knowledge on male reproductive effects of DiBP in experimental animals is lacking. Methods: In the current study, four groups of pregnant Wistar rats were exposed to either 0 mg/kg bw/day or 600 mg/kg bw/day of DiBP from gestation day (GD) 7 to either GD 19 or GD 20/21. Male offspring was examined at GD 19 or GD 20/21 for effects on testicular testosterone production and testicular histopathology. Changes in anogenital distance (AGD) were evaluated as an indication of feminisation of males. Results: Anogenital distance was statistically significantly reduced at GD 20/21 to-ether with reductions in testicular testosterone production and testicular testosterone content. Histopathological effects (Leydig cell hyperplasia, Sertoli cell vacuolisation, central location of gonocytes and presence of multinuclear gonocytes) known for DBP and DEHP were observed in testes of DiBP-exposed animals at GD 20/21. Male offspring was examined at GD 19 or GD 20/21 for effects on testicular testosterone production and testicular histopathology. Changes in anogenital distance (AGD) were evaluated as an indication of feminisation of males. Results: Anogenital distance was statistically significantly reduced at GD 20/21 to-ether with reductions in testicular testosterone production and testicular testosterone content. Histopathological effects (Leydig cell hyperplasia, Sertoli cell vacuolisation, central location of gonocytes and presence of multinuclear gonocytes) known for DBP and DEHP were observed in testes of DiBP-exposed animals at GD 20/21. Additionally, immunohistochemical expression of P450scc and StAR proteins in Leydig cells was reduced by DiBP. At GD 19, these effects on anogenital distance, testosterone levels and histopathology were less prominent. Conclusion: In this study, GD 20/21 rather than GD 19 appears to be the optimal time for investigating changes in anogenital distance, testosterone levels, and testicular histopathology. DiBP has similar testicular and developmental effects as DBP and DEHP, and although more developmental and especially postnatal studies are needed to clearly identify the reproductive effects of DiBP, this study indicates a reason for concern about the use of DiBP as a substitute for DBP. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute
Contributors: Boberg, J., Petersen, M. A., Vinggaard, A., Dalgaard, M.
Pages: 183-190
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Toxicology Letters
Volume: 163
Issue number: 3
ISSN (Print): 0378-4274
Estrogenic effects in vitro and in vivo of the fungicide fenarimol

The fungicide fenarimol has the potential to induce endocrine disrupting effects via several mechanisms since it possesses both estrogenic and antiandrogenic activity and inhibits aromatase activity in cell culture studies. Hence, the integrated response of fenarimol in vivo is not easy to predict. In this study, we demonstrate that fenarimol is also estrogenic in vivo, causing significantly increased uterine weight in ovariectomized female rats. In addition, mRNA levels of the estrogen responsive gene lactoferrin (LF) were decreased in uteri, serum FSH levels were increased, and T3 levels decreased in fenarimol-treated animals. To our knowledge, only two other pesticides (o.p-DDT and methoxychlor) have previously been reported to induce an estrogenic response in the rodent uterotrophic bioassay. A pronounced xenoestrogenicity in serum samples from rats treated with fenarimol and estradiol benzoate (E2B) separately or in combination was observed, demonstrating the usefulness of this approach for estimating the integrated internal exposure to xenoestrogens. The MCF-7 cell proliferation assay was used to investigate further the dose-response curves for the estrogenic, antiestrogenic, and aromatase inhibiting properties of fenarimol in vitro. The results indicates that fenarimol exhibits a dual effect being aromatase inhibitor at low concentrations and estrogenic at higher concentrations.

In vitro screening of azole fungicides for antiandrogenic effects – comparison with in vivo effects

In general, azole fungicides have a low acute toxicity but little is known about their potential health risks at low chronic exposures. We have recently shown that prochloraz has multiple potential mechanisms of action, including interaction with the estrogen and androgen receptors, in cell-based assays. In vitro prochloraz proved to be an activator of the aryl hydrocarbon receptor (AhR), to inhibit aromatase activity and to possess antiestrogenic and antiandrogenic effects both in vitro and in vivo. Another two azole fungicides, tebuconazole and epoxiconazole, have now been investigated for antiandrogenic effects in vitro and in vivo as well. The fungicides were screened in two well-established cell assays, including testing for agonistic and antagonistic effects on AR in transfected CHO cells, using the AR reporter gene assay. Secondly the compounds were analyzed for effects on steroidogenesis in H295R cells, a cell line, which produces a wide range of steroid hormones in measurable quantities, including testosterone, progesterone and estradiol, a property that makes it suitable as a screening assay to detect effects on steroidogenesis. In the in vitro tebuconazole and epoxiconazole showed antiandrogenic effects, and in the H295R cell assay, tebuconazole and epoxiconazole were like prochloraz able to inhibit testosterone and estradiol levels and increase progesterone levels. For the in vivo testing, a study was conducted testing the developmental effects on offspring after prenatal exposure, by looking at endpoints like hormone levels in male fetuses and sign of feminization of the male offspring. In vivo tebuconazole had an increasing effect on the testicular level of 17alpha-hydroxyprogesterone and progesterone, a decreasing effect on the level of testosterone, but no effect on testicular testosterone and progesterone production. Epoxiconazole showed now effect. Furthermore tebuconazole increased the AGD in female pups and resulted in an increased number of nipples in male pups at PND 13, a tendency that was also seen for epoxiconazole, though it was not significant. In conclusion the results
obtained in vitro is in good agreement with the effects observed in vivo. Tebuconazole showed antiandrogenic effects both in vitro and in vivo. Antiandrogenic effects were also seen for epoxiconazole in vitro, however the observed effects in vivo was not quite what might be predicted from the in vitro experiments, which can be due to the fact, that in vitro generally is more sensitive than in vivo.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute
Contributors: Taxvig, C., Hass, U., Petersen, M. A., Vinggaard, A. M.
Publication date: 2006

Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz
The fungicide prochloraz has got multiple mechanisms of action that may influence the demasculinizing and reproductive toxic effects of the compound. In the present study, Wistar rats were dosed perinatally with prochloraz (50 and 150 mg/kg/day) from gestational day (GD) 7 to postnatal day (PND) 16. Caesarian sections were performed on selected dams at GD 21, while others were allowed to give birth to pups that were followed until PND 16. Prochloraz caused mild dystogenesis of the male external genitalia as well as reduced anogenital distance and retention of nipples in male pups. An increased anogenital distance indicated virilization of female pups. Effects on steroidogenesis in male fetuses became evident as decreased testicular and plasma levels of testosterone and increased levels of progesterone. Ex vivo synthesis of both steroid hormones was qualitatively similarly affected by prochloraz. Immunohistochemistry of fetal testes showed increased expression of 17 alpha-hydroxylase/17,20-lyase (P450c17) and a reduction in 17 beta-hydroxysteroid dehydrogenase (type 10) expression, whereas no changes in expression of genes involved in testicular steroidogenesis were observed. Increased expression of P450c17 mRNA was observed in fetal male adrenals, and the androgen-regulated genes ornithine decarboxylase, prostatic binding protein C3 as well as insulin-like growth factor I mRNA were reduced in ventral prostates PND 16. These results indicate that reduced activity of P450c17 may be a primary cause of the disrupted fetal steroidogenesis and that an altered androgen metabolism may play a role as well. In vitro studies on human adrenocortical carcinoma cells supported the findings in vivo as reduced testosterone and increased progesterone levels were observed. Overall, these results together indicate that prochloraz acts directly on the fetal testis to inhibit steroidogenesis and that this effect is exhibited at protein, and not at genomic, level. (c) 2005 Elsevier Inc. All rights reserved.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute, Cell biology and virology Group, Biomedical Micro Systems Section, Department of Micro- and Nanotechnology, Technical University of Denmark
Pages: 160-171
Publication date: 2006
Peer-reviewed: Yes

Publication information
Journal: Toxicology and Applied Pharmacology
Diethylhexyl phthalate (DEHP) is widely used as a plasticizer in consumer products and is known to disturb the
development of the male reproductive system in rats. The mechanisms by which DEHP exerts these effects are not yet
fully elucidated, though some of the effects are related to reduced fetal testosterone production. The present study
investigated the effects of four different doses of DEHP on fetal testicular histopathology, testosterone production and
expression of proteins and genes involved in steroid synthesis in fetal testes. Pregnant Wistar rats were gavaged from GD
7 to 21 with vehicle, 10, 30, 100 or 300 mg/kg bw/day of DEHP. In male fetuses examined at GD 21, testicular
testosterone production ex vivo and testicular testosterone levels were reduced significantly at the highest dose.
Histopathological effects on gonocytes were observed at 100 and 300 mg/kg bw/day, whereas Leydig cell effects were
mainly seen at 300 mg/kg bw/day. Quantitative RT-PCR revealed reduced testicular mRNA expression of the
steroidogenesis related factors SR-B1, StAR, PBR and P450scc. Additionally, we observed reduced mRNA expression of
the nuclear receptor SF-1, which regulates certain steps in steroid synthesis, and reduced expression of the
cryptorchidism-associated Insl-3. Immunohistochemistry showed clear reductions of StAR, PBR, P450scc and PPAR
gamma protein levels in fetal Leydig cells, indicating that DEHP affects regulation of certain steps in cholesterol transport
and steroid synthesis. The suppression of testosterone levels observed in phthalate-exposed fetal rats was likely caused
by the low expression of these receptors and enzymes involved in steroidogenesis. It is conceivable that the observed
effects of DEHP on the expression of nuclear receptors SF-1 and PPAR gamma are involved in the downregulation of
steroidogenic factors and testosterone levels and thereby underlie the disturbed development of the male reproductive
system. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis

Prochloraz: an imidazole fungicide with multiple mechanisms of action

Prochloraz: an imidazole fungicide with multiple mechanisms of action
Antiandrogenic effects in short-term in vivo studies of the fungicide fenarimol

The fungicide fenarimol has estrogenic and antiandrogenic activity and inhibits aromatase activity in vitro. We tested, whether fenarimol had antiandrogenic effects in vivo. In a Hershberger assay, fenarimol given orally to castrated testosterone-treated male rats caused markedly reduced weights of ventral prostate, seminal vesicles, musc. levator anitbulbocavernosus, and bulbourethral glands. Qualitatively similar, but weaker, effects were also evident in intact fenarimol-exposed young adult males. except that prostates were not significantly affected. Changes in androgen-regulated gene expression were determined by real-time RTPCR in ventral prostates and fenarimol caused a pronounced decrease of prostate binding protein C3 (PBP C3), ornithin decarboxylase (ODC), and insulin-like-growth factor 1 (IGF-1) mRNA levels. The antiandrogentic drug flutamide, included as a positive control, caused down-regulation of PBP C3 mRNA and up-regulation of TRPM-2 mRNA levels. Serum T4 levels were reduced after fenarimol treatment and a tendency towards increased LH levels was seen. However, no effects on testosterone levels or testosterone production ex vivo could be revealed. Taken together these results indicate that fenarimol acts as an antiandrogen in vivo having effects qualitatively comparable to those of flutamide on organ level, whereas differential effects on gene expression were observed. In an additional Hershberger test, the effects of fenarimol were compared to those of estradiol benzoate, prochloraz and the aromatase inhibitor fadrozole. The data indicate a similar mode of action of fenarimol and prochloraz in the males, whereas no indications were found that the estrogenic or aromatase inhibitory properties had important impact on the effects observed in the males. Thus, it is suggested that fenarimol mediates its antiandrogenic effects at least partly via antagonism of androgen receptors.
Gene expression changes in rat prostate after activation or blocking of the androgen and estrogen receptor
Several endpoints of different molecular complexity were studied in the Hershberger assay in order to evaluate the specificity and suitability of this test as a broad screening model. Androgen and estrogen receptors were activated or blocked, and expression of typical estrogen- or androgen responsive genes (complement C3, ER alpha, ER beta, AR, TRPM-2, PBPC3, ODC, and IGF-1 mRNA) was analyzed in rat ventral prostate by real time RT-PCR. Administration of estradiol benzoate (EB) to castrated testosterone-treated rats had no effect on reproductive organ weights or gene expression levels and the anti-estrogen, ICI 182780, only affected ODC expression. Therefore, estrogenic or anti-estrogenic compounds would not be expected to seriously affect the outcome of a Hershberger test. However, EB given alone to castrated rats resulted in various effects. EB increased seminal vesicle weight, an effect reversed by ICI 182780, and affected TRPM-2, PBPC3, ODC, IGF-1, AR, and ERa mRNA levels. AR expression in the prostate seemed to be under regulation of both estrogens and androgens, as ICI 182780 inhibited the testosterone-induced AR expression, and flutamide inhibited the EB-induced AR expression. These data indicate that estrogens have various effects in castrated male rats and that expression of several genes is under multi-hormonal control in the ventral prostate. However, interactions between estrogens and androgens do not play a major role in the Hershberger assay, as simultaneous TP administration abolished the effects of EB. First choice of gene expression profiles in the Hershberger assay to study androgenic or anti-androgenic effects would be the traditional, TRPNI-2 and PBPC3, supplemented with the new complement C3.

Gene expression profiling of rat liver after in utero exposure to the fungicide prochloraz using GeneChip (R) Rat Genome Array

Gene expression profiling of rat liver after in utero exposure to the fungicide prochloraz using GeneChip (R) Rat Genome Array
Low-dose effects of anti-androgens in male rat offspring after perinatal exposure

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute, Sektion for Eksotiske Vireussygdomme, Division of Virology, National Veterinary Institute
Contributors: Hass, U., Christiansen, S., Dalgaard, M., Filinska, M., Borch, J., Vinggaard, A., Metzdorff, S. B.
Publication date: 2005
Peer-reviewed: No
Event: Abstract from The CREDO Cluster Workshop on Endocrine Disrupters: Exposure Assessment, Epidemiology, Low-dose and Mixture Effects, Prague, .
Source: orbit
Source-ID: 245241
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2005 › Research

Perinatal exposure to the fungicide prochloraz feminizes the male rat offspring
Prochloraz is a commonly used fungicide that has shown multiple mechanisms of action in vitro. It antagonizes the androgen and the estrogen receptors, agonizes the Ah receptor, and inhibits aromatase activity. In vivo prochloraz acts antiandrogenically in the Hershberger assay by reducing weights of reproductive organs, affecting androgen-regulated gene expressions, and increasing luteinizing hormone (LH) levels. The purpose of this study was to investigate reproductive toxic effects after exposure during gestation and lactation to prochloraz alone and a mixture of five pesticides (deltamethrin, methiocarb, prochloraz, simazine, and tribenuron-methyl). Prochloraz (30 mg/kg/day) or the mixture (20 mg/kg/day) was dosed to pregnant Wistar dams from gestational day (GD) 7 until postnatal day (PND) 16. Some dams were taken for cesarean section at GD 21, and others were allowed to give birth. Results showed that prochloraz and the mixture significantly reduced plasma and testicular testosterone levels in GD 21 male fetuses, whereas testicular progesterone was increased. Gestational length was increased by prochloraz. Chemical analysis of the rat breast milk showed that prochloraz was transferred to the milk. In males a significant increase of nipple retention was found, and the bulbourethral gland weight was decreased, whereas other reproductive organs were unaffected. In addition cytochrome P450 (CYP)1A activities in livers were induced by prochloraz, possibly as a result of Ah receptor activation. Behavioral studies showed that the activity level and sweet preference of adult males were significantly increased. Overall these results strongly indicate that prochloraz feminizes the male offspring after perinatal exposure, and that these effects are due, at least in part, to diminished fetal steroidogenesis.

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Division of Food Chemistry
Pages: 886-897
Publication date: 2005
Peer-reviewed: Yes

Publication information
Journal: Toxicological Sciences
Volume: 85
Issue number: 2
ISSN (Print): 1096-6080
Ratings:
Scopus rating (2005): SJR 1.244 SNIP 1.193
Web of Science (2005): Indexed yes
Original language: English
DOIs:
10.1093/toxsci/kfi150
Source: orbit
Source-ID: 238530
Research output: Contribution to journal › Journal article – Annual report year: 2005 › Research › peer-review

Hormonforstyrrende effekter af kombinationer af pesticider

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment
Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals

We evaluated and compared four in vitro assays to detect androgen agonists and antagonists in an international interlaboratory study. Laboratory 1 used a cell proliferation assay (assay 1) with human mammary carcinoma cells stably transfected with human androgen receptor. The other laboratories used reporter gene assays, two based on stably transfected human prostate carcinoma cells (assay 2) or human mammary carcinoma cells (assay 4), and the third based on transient transfection of Chinese hamster ovary cells (assay 3). Four laboratories received four coded compounds and two controls: two steroidal androgens, two antiandrogens, an androgenic control, 5alpha-dihydrotestosterone (DHT), and an antiandrogenic control, bicalutamide (ICI 176,334). All laboratories correctly detected the androgenic activity of 4-androsten-3,17-dione and 17alpha-methyl-testosterone. For both compounds, the calculated androgenic potencies relative to the positive control (RAPs) remained within one order of magnitude. However, laboratory 3 calculated a 50-fold higher RAP for 4-androsten-3,17-dione. All assays detected and quantified the antiandrogenic effect of vinclozolin [median inhibitory concentration (IC50) values ranging from 1.1 x 10(-7) M to 4.7 x 10(-7) M]. In assays 2 and 3, vinclozolin showed partial androgenic activity at the highest concentrations tested. For vinclozolin, calculated antiandrogenic potencies relative to bicalutamide (RAAPs) differed no more than a factor of 10, and IC50 values matched those of bicalutamide. Similarly, we found antiandrogenic activity for tris-(4-chlorophenyl) methanol. RAAP values were between 0.086 and 0.37. Three assays showed cytotoxicity for this compound at or above 1 x 10(-5) M. In summary, all assays proved sensitive screening tools to detect and quantify androgen receptor-mediated androgenic and antiandrogenic effects of these chemicals accurately, with coefficients of variation between 8 and 90%.

Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats

The plasticizer di(2-ethylhexyl)phthalate (DEHP) exhibits antiandrogenic effects in perinatally exposed male rats. Di(2-ethylhexyl) adipate (DEHA) and diisononyl phthalate (DINP) are currently being evaluated as potential substitutes for DEHP, but similarities in structure and metabolism of DEHP with DEHA and DINP have led to the hypothesis that similarities in action may also exist. Pregnant Wistar rats were gavaged during gestation and lactation with vehicle, DEHP (300 or 750 mg/kg bodyweight per day), DINP (750 mg/kg bodyweight per day), DEHP (750 mg/kg bodyweight per day) in combination with DEHA (400 mg/kg bodyweight per day), or DEHP (300 mg/kg bodyweight per day) in combination with DINP (750 mg/kg bodyweight per day). DINP and DEHP were both shown to reduce testicular testosterone production ex
vivo and testosterone levels in testes and plasma of male fetuses at gestation day 2, indicating a similar mechanism of action for DINP and DEHP. Additionally, plasma LH levels in male fetuses were elevated. Neonatal anogenital distance was reduced and the number of nipples at postnatal day 13 increased in DEHP-exposed male offspring. Serum inhibin B levels were significantly reduced in DEHP-exposed prepubertal male offspring, and in a few adult males. No modulating effects of DEHA on the endocrine effects of DEHP were detected, but a tendency towards an accumulating effect of DEHP and DINP in combination on suppression of testosterone synthesis was seen. (C) 2003 Elsevier Inc. All rights reserved.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute
Contributors: Boberg, J., Ladefoged, O., Hass, U., Vinggaard, A.
Pages: 53-61
Publication date: 2004
Peer-reviewed: Yes

Publication information
Journal: Reproductive Toxicology
Volume: 18
Issue number: 1
ISSN (Print): 0890-6238
Ratings:
Scopus rating (2004): SJR 0.643 SNIP 0.948
Web of Science (2004): Indexed yes
Original language: English
DOIs:
10.1016/j.reprotox.2003.10.011
Source: orbit
Source-ID: 233287

The combined antiandrogenic effects of five commonly used pesticides
In this study, mixture effects of five dissimilarly acting pesticides were analyzed for antiandrogenic effects in vitro and in vivo. Deltamethrin, methiocarb, prochloraz, simazine, and tribenuron-methyl are all commonly used for agricultural and horticultural purposes. Concentration-response curves for the inhibition of R1881-induced transcriptional activity of the androgen receptor (AR) in vitro of each pesticide alone and in an equimolar mixture were obtained. The IC25 values for deltamethrin, methiocarb, prochloraz, and the mixture were 5.8, 5.8, 3.5, and 7.5 μM, respectively. Simazine and tribenuron-methyl were ineffective. Applying the isobole method resulted in an isobole coefficient of 0.94 at IC25 for the effect of the mixture, indicating additive effects of the compounds. Comparison of observed effects and effects calculated by assuming additivity also strongly indicated additive effects of the pesticides in vitro. In vivo, each of the five pesticides and a mixture of the pesticides were tested for antiandrogenic effects in castrated testosterone-treated Wistar rats. The mixture induced a significant change of weights of the levator ani/bulbocavernosus muscle and adrenal glands. Changes in gene expression in ventral prostates were observed as distinct effects on levels of ornithin decarboxylase (ODC) mRNA and effects on levels of prostate binding protein subunit C3 (PBP C3) mRNA. No pesticide-induced effect on the level of testosterone-repressed prostatic message 2 (TRPM-2) mRNA was observed, whereas flutamide increased TRPM-2 levels. In conclusion, the pesticides were found to act additively in vitro. In vivo, the organ weight changes indicated that the pesticides had an accumulating effect that was not observed for the individual pesticides. Several pesticide-induced gene expression changes were observed, indicating that these are either very sensitive antiandrogenic end-points or that these changes are induced by a pathway not related to AR.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute
Contributors: Kjaerstad, M. B., Nellemann, C. L., Jarfelt, K., Jacobsen, H., Andersen, H. R., Dalgaard, M., Vinggaard, A.
Pages: 10-20
Publication date: 2004
Peer-reviewed: Yes

Publication information
Journal: Toxicology and Applied Pharmacology
Volume: 201
Issue number: 1
ISSN (Print): 0041-008X
Ratings:
Scopus rating (2004): SJR 1.102 SNIP 1.068
Di(2-ethylhexyl) adipate (DEHA) induced developmental toxicity but not antiandrogenic effects in pre- and postnatally exposed Wistar rats

Effect of in utero-administered coumestrol, equol, and organic selenium on biomarkers for phase 2 enzyme capacity and redox status

The aim of the present study was to investigate the effect of in utero administration of coumestrol, equol, and selenium-enriched yeast on selected hepatic phase 2 enzymes, plasma hormone levels, and markers for redox status in plasma and red blood cells (RBCs). The test compounds were administered via the diet to pregnant Sprague-Dawley rats throughout gestation. Within 24 h following delivery dams and offspring were sacrificed, and blood, liver and reproductive organs were sampled. Coumestrol, equol, and selenium-enriched yeast did not significantly affect hepatic glutathione S-transferase (GST), quinone reductase (QR), or RBC glutathione peroxidase (GP(x)) in the offspring, whereas significant increases in GST QR, and GP(x) activities in dams were observed following administration of selenium-enriched yeast. The level of 17beta-estradiol in offspring from coumestrol-exposed dams was significantly increased compared with the control. The present results indicate that selenium-enriched yeast, coumestrol, and equol affect selected hepatic phase 2 enzymes and GP(x) in RBC in dams, whereas the offspring in general were refractive to the employed treatments. Further studies are warranted to investigate whether the observed in utero effects imposed by the selected plant compounds confer permanent alterations on the health status of the animal resulting in an altered resistance to cancer.
Effects of currently used pesticides in the AhR-CALUX assay: comparison between the human TV101L and the rat H4IIE cell line

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biologic and toxicological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. The in vitro chemically activated luciferase expression (CALUX) assay has been proven to be a rapid and sensitive assay for assessing the potency of AhR-activating compounds. We have used the AhR-CALUX assay to investigate the AhR-mediated activity of the persistent organochlorine insecticide dieldrin and twenty-two pesticides currently used in Denmark by employing the rat H4IIE and the human TV101L hepatoma cell lines. In comparison the results indicated that the rat H4IIE cell line is more sensitive than the human TV101L for detection of TCDD inducing AhR-CALUX activity. The pesticides iprodione, chlorpyrifos and prochloraz showed dose-dependent AhR agonistic effects in both cell lines at concentrations above 10, 1 and 1 μM, respectively. However, some pesticides (methiocarb, chlorothalonil, tribenuron-methyl, paclobutrazol and tolclofos-methyl) elicited differential responses in the two cell lines.

General information
Publication status: Published
Organisations: National Food Institute, Technical University of Denmark
Contributors: Long, M., Laier, P., Vinggaard, A., Andersen, H., Lynggaard, J., Bonefeld-Jorgensen, E.
Pages: 77-93
Publication date: 2003
Peer-reviewed: Yes

Publication information
Journal: Toxicology
Volume: 194
Issue number: 1-2
ISSN (Print): 0300-483X
Ratings:
Scopus rating (2003): SJR 0.806 SNIP 1.043
Web of Science (2003): Indexed yes
Original language: English
Keywords: pesticide, CYPIA 1, AhR-CALUX, 2,3,7,8-tetrachlorodibenzo-p-dioxin, Ah receptor
DOI:
10.1016/j.tox.2003.08.001
Source: orbit
Source-ID: 229709
Research output: Contribution to journal › Journal article – Annual report year: 2003 › Research › peer-review

Effects of dietary antioxidants and 2-amino-3-methylimidazo[4,5-f]-quinoline (IQ) on preneoplastic lesions and on oxidative damage, hormonal status, and detoxification capacity in the rat

The potential beneficial or adverse affect of prolonged dietary administration of moderate to high doses (1-100 mg/kg diet) of the antioxidants, lycopene, quercetin and resveratrol or a mixture of lycopene and quercetin was investigated in male F344 rats. Selected markers for toxicity and defense mechanisms were assayed in blood, liver and colon and the impact of the antioxidant administrations on putative preneoplastic changes in liver and colon was assessed. The dietary carcinogen, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (200 mg/kg diet) served as a pro-oxidant, genotoxicity and general toxicity control. IQ increased the levels of protein and DNA oxidation products in plasma, the area of glutathione S-transferase-placental form positive (GST-P) foci in the liver as well as the number of colonic aberrant crypt foci (ACF). All antioxidants and the antioxidant combination significantly increased the level of lymphocytic DNA damage, to an extent comparable with the effect induced by IQ. In contrast to the control group where no GST-P foci were detected, GST-P foci were detected in animals exposed to quercetin, lycopene and the combination of the two. However, the increase in the volume of GST-P foci did not reach statistical significance. The present results indicate that moderate to high doses of common dietary antioxidants can damage lymphocyte DNA and induce low levels of preneoplastic liver lesions in experimental animals. Long-term exposure to moderate to high doses of antioxidants may thus via pro-oxidative mechanisms and non-oxidative mechanisms modulate carcinogenesis.
Male reproductive effects of octylphenol and estradiol in Fischer and Wistar rats

4-tert-Octylphenol is a non-ionic surfactant used as a detergent, emulsifier and wetting agent. It is generally accepted that it acts as a weak estrogenic substance when evaluated in in vitro and in vivo short-term screening assays. The sensitivity of animal species (mouse versus rat), strain (inbred versus outbred) has been a matter of concern when selecting assay type for testing of estrogenicity of chemicals. The present study was designed to investigate whether the choice of different animal strain, could affect the outcomes of studies. Fischer and Wistar adult male rats were exposed to vehicle or 400 mg/kg bw of 4-tert-octylphenol administrated orally by gavage. Estradiol benzoate, at a dose of 40 mg/kg bw, was used as positive control agent. Treatment with estradiol benzoate decreased serum levels of testosterone, LH, FSH, inhibin and increased prolactin. Additionally, estradiol benzoate decreased the weight of all investigated reproductive organs, decreased sperm production and increased seminiferous tubular degeneration in both strains. More progressive effects on testis weight and histopathology were observed in the Fischer rats. Oral administration of octylphenol at 400 mg/kg bw to both rat strains increased prolactin levels but had no effect on LH, FSH, testosterone or inhibin. In the octylphenol-treated Fischer rats the weights of the seminal vesicles and the levator ani/bulbocavernosus muscle were significantly decreased, whereas only the levator ani/bulbocavernosus muscle was affected in Wistar rats. The weights of all other reproductive organs and sperm count were unaffected. It is concluded that there might be an organ specific difference in sensitivity between the two strains with the Fischer rat being the most sensitive rat model as demonstrated mainly by the more progressive effects on testis weight and histopathology in estradiol benzoate-treated Fischer rats but also by the decrease in seminal vesicle weight in octylphenol-treated rats.
The combined effects of vinclozolin and procymidone do not deviate from expected additivity in vitro and in vivo

The combination effects of the well-known antiandrogenic fungicides, vinclozolin and procymidone, were tested both in vitro and in vivo. In vitro both vinclozolin and procymidone significantly inhibited the binding of agonist to the androgen receptor with the concentration that resulted in 50% inhibition (IC50) values of 0.1 and 0.6 μM, respectively. By applying the isobole method, the effect of combining the two pesticides in vitro was found to be additive. In castrated testosterone-treated rats the administration of vinclozolin starting at 10 mg/kg led to a decrease in organ weight of all tested reproductive organs. The levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were increased significantly with doses of 100 mg/kg vinclozolin and above. Expression of the androgen-responsive gene, TRPM-2, was increased starting at 100 mg/kg vinclozolin. For procymidone, reproductive organ weights were diminished at 10 mg/kg and LH was increased at a concentration of 25 mg/kg and above, compared to the testosterone-treated controls. FSH was significantly increased only at 25 mg/kg procymidone. The studied gene expressions were changed by 100 mg/kg procymidone. Dosing the animals with a combination of a 1:1 mixture of vinclozolin and procymidone resulted in a weight reduction in the reproductive organs and an increase of serum LH and FSH as early as with 10 mg/kg combined dose. The relative expressions of TRPM-2 and PBP C3 were changed compared to controls at 100 mg/kg. The level of 5-HT in the rat brain was increased after a dose of 10 mg/kg. Using the isobole method, comparisons of the observed and predicted effects assuming additivity on reproductive organ weights, hormone levels, and gene expression showed agreement and thus the combination effects are suggested to be additive in vivo as well as in vitro.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark
Contributors: Nellemann, C. L., Dalgaard, M., Lam, H. R., Vinggaard, A.
Pages: 251-262
Publication date: 2003
Peer-reviewed: Yes

Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro

Twenty-four pesticides were tested for interactions with the estrogen receptor (ER) and the androgen receptor (AR) in transactivation assays. Estrogen-like effects on MCF-7 cell proliferation and effects on CYP19 aromatase activity in human placental microsomes were also investigated. Pesticides (endosulfan, methiocarb, methomyl, pirimicarb, propamocarb, deltamethrin, fenpropathrin, dimethoate, chlorpyriphos, dichlorvos, tolchlofosmethyl, vinclozolin, iprodion, fenarimol, prochloraz, fosetylaluminum, chlorothalonil, daminizod, paclobutrazol, cloromequat chlorid, and ethephon) were selected according to their frequent use in Danish greenhouses. In addition, the metabolite mercaptodimethur sulfoxide, the herbicide tribenuron-methyl, and the organochlorine dieldrin, were included. Several of the pesticides, dieldrin, endosulfan, methiocarb, and fenarimol, acted both as estrogen agonists and androgen antagonists. Prochloraz reacted as both an estrogen and an androgen antagonist. Furthermore, fenarimol and prochloraz were potent aromatase inhibitors while endosulfan was a weak inhibitor. Hence, these three pesticides possess at least three different ways to potentially disturb sex hormone actions. In addition, chlorpyripso, deltamethrin, tolclofos-methyl, and tribenuron-methyl induced weak responses in one or both estrogenicity assays. Upon cotreatment with 17beta-estradiol, the response was potentiated by endosulfan in the proliferation assay and by pirimcarb, propamocarb, and daminizod in the ER transactivation assay. Vinclozolin reacted as a potent AR antagonist and dichlorvos as a very weak one. Methomyl, pirimicarb, propamocarb, and iprodion weakly stimulated aromatase activity. Although the potencies of the pesticides to react as hormone agonists or antagonists are low compared to the natural ligands, the integrated response in the organism might be amplified by the ability of the pesticides to act via several mechanism and the frequent simultaneous exposure to several pesticides.

General information
Publication status: Published
Organisations: National Food Institute
Screening of food samples for dioxin levels – comparison of GC/MS determination with the CALUX bioassay

General information
Publication status: Published
Organisations: Division of Food Chemistry, National Food Institute
Contributors: Cederberg, T. L., Laier, P., Vinggaard, A.
Pages: 409-412
Publication date: 2002

Host publication information
Title of host publication: Organohalogen Compounds
Volume: 58
Source: orbit
Source-ID: 245516
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2002 › Research

Toxicity testing and chemical analyses of recycled fibre-based paper for food contact
Food-contact materials, including paper, have to comply with a basic set of criteria concerning safety. This means that paper for food contact should not give rise to migration of components, which can endanger human health. The objectives of this pilot study were, first, to compare paper of different qualities as food-contact materials and to perform a preliminary evaluation of their suitability from a safety point of view, and, second, to evaluate the use of different in vitro toxicity tests for screening of paper and board. Paper produced from three different categories of recycled fibres (B-D) and a raw material produced from virgin fibres (A) were obtained from industry, and extracts were examined by chemical analyses and diverse in vitro toxicity test systems. The products tested were either based on different raw materials or different treatments were applied. Paper category B was made from 40% virgin fibres, 40% unprinted cuttings from newspapers, and 20% de-inked newspapers and magazines. Paper categories C and D were based on newspapers and magazines. However, paper D was de-inked, whereas C was not. To identify constituents of the papers with a potential to migrate into foodstuff, samples of the paper products were extracted with either 99% ethanol or water. Potential migrants in the extracts were identified and semiquantified by GC-1R-MS or GC-HRMS. In parallel to the chemical analyses, a battery of four different in vitro toxicity tests with different endpoints were applied to the same extracts: (1) a cytotoxicity test using normal human skin fibroblasts. The test was based on measurements of the reduction of resazurin to resorufin by cellular redox processes and used as a screening test for acute or general toxicity; (2) a Salmonella/microsome assay (Ames test) as a screening test for mutagenic and potentially carcinogenic compounds; (3) a recombinant yeast cell bioassay as a screening test for oestrogenic activity; (4) an aryl hydrocarbon (Ah)–receptor assay (CALUX assay) as a screening test for compounds with dioxin-like activity. In addition, the papers were tested for microbial content and, in general, the microbiological load was quite low. The following microorganisms were counted and identified on both surface and homogenized pulp samples: the total number of aerobic bacteria, the number of aerobic and anaerobic spore formers, the number of Bacillus cereus/thuringiensis, and the number of yeast and moulds. The chemical analyses showed a significantly higher amount and different composition pattern of chemicals extracted with ethanol compared with water. Analyses of the ethanol extracts showed a distinctly smaller number and lower concentrations of chemicals in extracts prepared from sample A compared with extracts of samples B–D. The compounds identified in B–D were similar, but the amounts were lower in B compared with C and D. In accordance with the chemical analyses, the water extracts were less
cytotoxic than the ethanol extracts. The extract prepared from virgin fibres was less cytotoxic than the extracts prepared from paper made from recycled fibres, and extracts prepared from C was the most cytotoxic. None of the extracts showed mutagenic activity. No conclusion about the oestrogenic activity could be made, because all extracts were cytotoxic to the test organism (yeast cells). Ethanol extracts of A and B showed a negligible positive response in the Ah-receptor assay at the highest nontoxic concentration, whereas C and D showed a more pronounced effect with C being the most potent. A comparable weak effect of water extracts of samples B-D was.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute, Division of Food Chemistry, Sektion for Eksotiske Virussygdomme, Division of Virology, National Veterinary Institute, Division of Microbiology and Risk Assessment
Pages: 13-28
Publication date: 2002
Peer-reviewed: Yes

Publication information
Journal: Food Additives and Contaminants
Volume: 19
Issue number: Suppl. S
ISSN (Print): 0265-203X
Ratings:
Scopus rating (2002): SJR 1.018 SNIP 1.377
Web of Science (2002): Indexed yes
Original language: English
Keywords: Ah-receptor activity, chemical analysis, microbiological quality, oestrogenic activity, food-contact material, recycled fibre, cytotoxicity, mutagenicity test
DOIs: 10.1080/02652030110089878
Source: orbit
Source-ID: 233571
Research output: Contribution to journal › Journal article – Annual report year: 2002 › Research › peer-review

Effect of dietary antioxidants and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) on biomarkers for redox and hormonal status and enzyme detoxification capacity in blood and major organs of male F344 rats

General information
Publication status: Published
Organisations: National Food Institute, Division of Toxicology and Risk Assessment, Technical University of Denmark
Pages: 93-93
Publication date: 2001
Peer-reviewed: Yes

Publication information
Journal: Toxicology
Volume: 164
Issue number: 1-3
ISSN (Print): 0300-483X
Ratings:
Scopus rating (2001): SJR 0.565 SNIP 0.741
Web of Science (2001): Indexed yes
Original language: English
Source: orbit
Source-ID: 230666
Research output: Contribution to journal › Conference abstract in journal – Annual report year: 2001 › Research › peer-review

Effect of highly bioaccumulated polychlorinated biphenyl congeners on estrogen and androgen receptor activity
Polychlorinated biphenyls (PCBs) are ubiquitous environmental persistent contaminants giving rise to potential health hazard. Some PCBs exert dioxin-like activities mediated through the aryl hydrocarbon receptor. Although reports on interaction with other nuclear receptors are sparse, some congeners are hypothesized to possess endocrine disruptive potential. Here we present evidence that the three PCBs most abundant in biological extracts, 2,2',3',4',4',5-
hexachlorobiphenyl (PCB # 138), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB # 153), and 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB # 180) have pleiotropic effects on the estrogen- and androgen-receptor. In MCF-7 cells a slightly increased cell proliferation was observed at low concentrations (1-10 nM) in cells co-treated with 0.01 nM 17 beta-Estradiol. whereas the compounds inhibited cell growth significantly at 1 and 10 muM. In reporter gene (ERE-tk-CAT) analysis the three congeners exhibited a significantly estrogen receptor-ligand mediated decrease of the chloramphenicol transferase activity in both control and 10 nM 17 beta-estradiol induced MCF-7 cells. In addition, PCB # 138 elicited a dose-dependent antagonistic effect on androgen receptor activity in transiently co-transfected Chinese Hamster Ovary cells with an IC50, of 6.2 muM. In summary, this study indicate that the di-ortho, multiple-chloro substituted biphenyls, PCB # 138, PCB # 153 and PCB # 180, can compete with the binding of the natural ligand to two sexual hormone receptors and thus possess the ability to interfere with sexual hormone regulated processes.

In utero reproductive study in rats exposed to nonylphenol

Alkylphenol ethoxylates are widely used non-ionic surfactants. Nonylphenol ethoxylate constitutes 82% of the production of all alkylphenol ethoxylates and the breakdown product of nonylphenol ethoxylate, nonylphenol (NP) has been shown to be estrogenic in both in vitro and in vivo screening assays. To determine the potential reproductive toxicity of NP, a one-generation in utero study was conducted. Rats were dosed from gestation day 11 through 18 with NP at 3, 15, or 75 mg/kg/day or diethylstilbestrol (DES) at 30 mug/kg/day. DES was used as a positive control. Both substances were given orally by gavage. Male offspring were sacrificed at postnatal day (PND) 11, 21, or 110 and reproductive parameters were evaluated. Pup birth weight and body weight and percent motile sperm at age of 110 day were significantly reduced by DES. The absolute weight of the right epididymis was significantly reduced in the DES group. The absolute weight of the right epididymis were also significantly decreased in the animals exposed to 75 or 15 mg/kg/day NP, effects which disappeared when organ weight was related to body weight. This study showed a dose-dependent effect of nonylphenol on male reproductive development at doses of 75 and 15 mg/kg bw/day based on absolute epididymal weight.
Quantification of antiandrogen effect determined by Lightcycler technology

During the last decade, the possible effects of xenobiotics on male reproductive health have resulted in great concern. More recently, evidence of antiandrogen effect in vivo by certain chemicals has been reported. The classical Hershberger in vivo assay determining organ weight changes can be improved by measuring hormone levels as well as determining changes in gene expression of androgen-responsive genes. A real-time RT-PCR method using LightCycler technology (Roche) suitable for quantitative determination of gene expression is described. The technique combines rapid thermocycling with online fluorescence detection of PCR product formation. In this study, investigation of expression of prostate specific binding protein polypeptide C3 (PBP C3) and testosterone-repressed prostatic message 2 (TRPM-2) in the ventral prostate was performed in 60-days-old castrated Wistar rats treated daily with testosterone with or without addition of flutamide or vinclozolin for 7 days in total. We show that we can quantify the level of gene expression by use of LightCycler technology, supported by changes in reproductive organ weights as well as in hormone levels, and that analysis of gene expression levels is an even more sensitive endpoint.

Using the CALUX bioassay for screening and determination of dioxin-like compounds in human milk

Identification and quantification of estrogenic compounds in recycled and virgin paper for household use as determined by an in vitro yeast estrogen screen and chemical analysis
The use of recycled paper for the manufacture of food contact materials is widespread, but very little is known about the presence of potential contaminants in the paper. The purpose of this study was to assess the worst-case migration of estrogenic active compounds using extracts of paper for household use. Twenty different brands of kitchen rolls, nine of which were made from recycled paper and the remainder from virgin paper, were obtained from retail shops. Paper extracts were subjected to (a) determination of the total estrogenic activity by using an in vitro estrogen screen based on yeast cells stably transfected with the human estrogen receptor alpha and (b) chemical analysis and quantification by GC/MS, GC/FTIR/MS, and GC/FID for detection of a variety of estrogenic compounds. A marked estrogenic response was observed in nine of the extracts, seven of which were made from recycled paper and two from virgin paper. The chemical analysis revealed that extracts made from recycled paper contained levels of bisphenol A ranging from 0.6 to 24 mg/kg of kitchen roll, whereas extracts from virgin paper contained no bisphenol A or only negligible amounts. In contrast, 4-tert-octylphenol, 4-nonylphenols, and di-n-butyl and diisobutyl phthalate were present to a varying degree in both recycled and virgin paper with no apparent preferable distribution between the two paper types. The estrogenic response of the two extracts made from virgin paper appeared to be due partly to the presence of the preservative propyl paraben. Diisopropynaphthalene, which turned out to be weakly estrogenic active in vitro (EC50 = 53 μM), was detected in minor amounts in most of the extracts with the major part, ranging from 0.3 to 4.7 mg/kg of paper, found in recycled paper. Our findings that recycled kitchen rolls contain bisphenol A and other xenoestrogens may apply to other types of recycled paper used for food packaging and emphasize the importance of identifying this and other contaminants in recycled paper in general. These data indicate that bisphenol A may be useful as a purity indicator for recycled paper.
(MMTV)(2)-luciferase vector using the new nonliposomal transfection reagent FuGene, Stimulation of the cells for 24 h with the synthetic androgen receptor agonist, R1881 (10 nM), resulted in a 30- to 60-fold induction of luciferase activity. The classical antiandrogenic compounds hydroxy-flutamide, bicalutamide, spironolactone, and cyproterone acetate together with the pesticide(metabolite)s, vinlozolin, p,p'-DDE, and procyomidone all potently inhibited the response to 0.1 nM R1881. Compared to the traditional calcium phosphate transfection method, this method has the advantage of being more feasible, as the assay can be scaled down to the microtiter plate format. Furthermore, the transfection reagent is nontoxic, allowing its addition together with the test compounds thereby reducing the hands-on laboratory time. This assay is a powerful tool for the efficient and accurate determination and quantification of the effects of antiandrogens on reporter gene transcription. To extend the application of FuGene, the reagent was shown to be superior compared to Lipofectin for transfecting MCF7 human breast cancer cells with an estrogen response element-luciferase vector. Thus, FuGene may prove to be valuable in diverse reporter gene assays involving transient transfections for screening of potential endocrine disrupters for (anti)androgenic and (anti)estrogenic properties.

Screening of selected pesticides for oestrogen receptor activation in vitro
Twenty pesticides were tested for their ability to activate the oestrogen receptor in vitro using an MCF7 cell proliferation assay and a Yeast Oestrogen Screen. The fungicides fenarimol, triadimefon, and triadimenol were identified as weak oestrogen receptor agonists, which at 10 μM induces a 2.0, 2.4, and 1.9-fold increase in proliferation of human MCF7 breast cancer cells (E3 clone). The relative proliferation efficiency (RPE) was 43-69%, indicating partial agonism at the oestrogen receptor. Several pesticides did not have any effect on the proliferation response after 6 days of exposure, including chlorpyrifos, diuron, iprodion, linuron, pentachlorphenol, prochloraz, propiconazol, propyzamine, quintozene, tetrachlorvinphos and tetradifon. Some pesticides resulted in a negligible proliferation response, which was nor statistically significant under the present experimental conditions. These were bromopropylate, chlorfenvinphos, chlorobenzilate, dicofol, heptachlor, and imazalil. Fenarimol and dicofol also gave rise to a positive oestrogenic response in yeast cells transfected with rite oestrogen receptor alpha, whereas the remaining compounds resulted in a negative response due either to biological inactivity or cytotoxicity to the yeast cells. The EC50 for fenarimol has estimated to be 13 μM in the yeast cells, compared with an EC50 of 3 μM in the MCF7 cells, indicating higher sensitivity of the latter assay. No in vivo data for fenarimol, triadimefon or triadimenol have previously been published that support oestrogenic activity in the intact animal, Thus, from the present results Mie suggest that oestrogen receptor activation may not be an important mode of action for these compounds. The need to include at least two bioassays in a screening procedure and for combining in vitro and in vivo data is emphasized.
Scopus rating (1999): SJR 0.836 SNIP 1.036
Original language: English
Keywords: oestrogen receptor, endocrine disruption, pesticides, fenarimol
DOI:
10.1080/026520399283678
Source: orbit
Source-ID: 230902
Research output: Contribution to journal › Journal article – Annual report year: 1999 › Research › peer-review

Screening af plastemballage til slik og chokoladevarer for østrogen aktivitet

General information
Publication status: Published
Organisations: National Food Institute, Division of Food Chemistry, Division of Toxicology and Risk Assessment
Publication date: 1997

Publication information
Original language: Danish
Source: orbit
Source-ID: 244818
Research output: Book/Report › Report – Annual report year: 1997 › Research

The effects of n-butanol vapour on respiratory rate and tidal volume.

General information
Publication status: Published
Organisations: Division of Toxicology and Risk Assessment, National Food Institute, FoodDTU
Contributors: Kristiansen, U., Nielsen, G. D., Vinggaard, A. M.
Publication date: 1988
Peer-reviewed: Yes

Publication information
Journal: Toxicology
ISSN (Print): 0300-483X
Original language: English
Source: orbit
Source-ID: 269401
Research output: Contribution to journal › Journal article – Annual report year: 1988 › Research › peer-review

Projects:

Improved human risk assessment of polyfluoroalkyl substances
Davidsen, N., PhD Student, National Food Institute
Vinggaard, A. M., Main Supervisor
Rosenmai, A. K., Supervisor
Svingen, T., Supervisor
01/03/2019 → 28/02/2022
Project: PhD

CeHoS: Center for Hormonforstyrrende Stoffer (Centre for Endocrine Disruptors)
Svingen, T., PI, National Food Institute, Research group for Molecular and Reproductive Toxicology
Vinggaard, A. M., PI, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology, National Food Institute
Nature of activity type: Research, Individual grant
Collaborators: University of Southern Denmark, Rigshospitalet, Miljøstyrelsen
Project: Research

ThyroMix: Development of tool for mixture risk assessment of thyroid hormone disrupting chemicals
Grant from the Ministry of Environment and Food of Denmark
Vinggaard, A. M., PI, National Food Institute, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology
Johansson, H. K. L., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Boberg, J., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Petersen, M. A., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
01/10/2016 → 31/01/2018
Nature of activity type: Individual grant
Project: Research

JANUS: Prediction of male reproductive health effects by integrating in vitro data and PBK modelling
Vinggaard, A. M., PI, National Food Institute, Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology
Taxvig, C., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Christiansen, S., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Frandsen, H. L., Project Participant, Research group for Analytical Food Chemistry, National Food Institute
Svingen, T., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
01/10/2017 → 30/09/2020
Nature of activity type: Individual grant
Collaborators: Brunel University
Project: Research

HBM4EU: H2020 European Joint Program: Human Biomonitoring for Europe
Vinggaard, A. M., PI, Research group for Molecular and Reproductive Toxicology, National Food Institute
Taxvig, C., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Rosenmai, A. K., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Boberg, J., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Johansson, H. K. L., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Svingen, T., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
01/01/2017 → 31/12/2021
Nature of activity type: Individual grant
Collaborators: >100 European partners
Project: Research

Towards improved human reproductive health: gaining new insight into chemically induced effects on male reproduction
Grant from the Danish Research Council, 2017-2019
Vinggaard, A. M., PI, Research group for Molecular and Reproductive Toxicology, National Food Institute
Svingen, T., Project Participant, Research group for Molecular and Reproductive Toxicology, National Food Institute
Schwartz, C. V. L., PhD Student, Research group for Molecular and Reproductive Toxicology, National Food Institute
01/01/2017 → 31/12/2019
Nature of activity type: Individual grant
Project: Research

Future risk assessment of chemicals (MIraculiX)
Development of Physiologically Based Kinetic (PBK) models for risk assessment of chemicals.
Vinggaard, A. M., Project Coordinator, Copenhagen Center for Health Technology, National Food Institute
Taxvig, C., Project Manager, National Food Institute
Svingen, T., Project Manager, National Food Institute, Research Group for Molecular Toxicology
Boberg, J., Project Manager, National Food Institute, Research Group for Reproductive Toxicology
Bonomo, S., Project Participant, National Food Institute
02/01/2017 → 31/12/2018
Keywords: PBK modeling, Risk assessment
Collaborators: Brunel University
Project: Research

Optimizing and refining 3D culturing of human stem cells for predictive toxicity
Lauschke, K., PhD Student, National Food Institute
Vinggaard, A. M., Main Supervisor
Emnéus, J., Supervisor
Taxvig, C., Supervisor
Technical University of Denmark
01/12/2016 → 05/10/2020
Award relations: Optimizing and refining 3D culturing of human stem cells for predictive toxicity
Mechanisms of action involved in chemically-induced effects on male reproductive health
Schwartz, C. V. L., PhD Student, National Food Institute
Vinggaard, A. M., Main Supervisor
Svingen, T., Supervisor
Forskningsrådsfinansiering
01/12/2016 → 30/11/2019
Award relations: Mechanisms of action involved in chemically-induced effects on male reproductive health
Project: PhD

Hormonforstyrrende effekter af kemikalier i fødevareemballage
Rosenmai, A. K., PhD Student, National Food Institute
Vinggaard, A. M., Main Supervisor
Taxvig, C., Supervisor
Boberg, J., Examiner
Andersen, H. R., Examiner
Si-Lung Lau, C., Examiner
Technical University of Denmark
01/11/2011 → 09/03/2015
Award relations: Hormonforstyrrende effekter af kemikalier i fødevareemballage
Project: PhD

Effects of endocrine disrupting chemicals on adipogenesis and metabolism
Ramskov Tetzlaff, C. N., PhD Student, National Food Institute
Taxvig, C., Main Supervisor
Svingen, T., Supervisor
Vinggaard, A. M., Supervisor
Samfinansieret - Andet
15/12/2014 → 07/11/2019
Award relations: Application of human stem cells for predicting human safety of chemicals
Project: PhD

Identification and risk assessment of unknown contaminants migrating from Food Contact Materials
Pieke, E. N., PhD Student, National Food Institute
Granby, K., Main Supervisor
Smedsgaard, J., Supervisor
Vinggaard, A. M., Examiner
Nielsen, N. J., Examiner
Grob, K., Examiner
Technical University of Denmark
01/12/2014 → 16/05/2018
Award relations: Identification and risk assessment of unknown contaminants migrating from Food Contact Materials
Project: PhD

Effect biomarkers for endocrine disrupting chemicals
Johansson, H. K. L., PhD Student, National Food Institute
Vinggaard, A. M., Main Supervisor
Boberg, J., Supervisor
Svingen, T., Supervisor
Madsen, C. B., Examiner
Yding Andersen, C., Examiner
Mazaud-Guittot, S., Examiner
Samfinansieret - Andet
01/09/2013 → 09/02/2017
Award relations: Effect biomarkers for endocrine disrupting chemicals
Project: PhD

Improving the exposure basis of toxicological research on persistent organic pollutants and their mixtures
Gilbert, D., PhD Student, National Food Institute
Mayer, P., Main Supervisor
Bioinformatics and toxicology
Kongsbak, K. G., PhD Student, National Food Institute
Vinggaard, A. M., Main Supervisor
Audouze, K. M. L., Supervisor
Eklund, A. C., Supervisor
Hadrup, N., Supervisor
Nikolov, N. G., Examiner
Boonen, H., Examiner
Legler, J., Examiner
Technical University of Denmark
15/11/2011 → 29/04/2015
Award relations: Bioinformatics and toxicology
Project: PhD

Development and validation of QSAR models for mechanisms related to endocrine disruption
Abildgaard Rosenberg, S., PhD Student, National Food Institute
Vinggaard, A. M., Main Supervisor
Dybdahl, M., Supervisor
Nikolov, N. G., Supervisor
Wedebye, E. B., Supervisor
Boberg, J., Examiner
Cronin, M. T. D., Examiner
Kramer, S. T., Examiner
Samfinansieret - Andet
15/12/2013 → 30/08/2017
Award relations: Development and validation of QSAR models for mechanisms related to endocrine disruption
Project: PhD

MiraculiX: Future risk assessment of chemicals
Vinggaard, A. M., Project Coordinator, National Food Institute, Research Group for Molecular Toxicology
Boberg, J., Project Manager, National Food Institute, Research Group for Reproductive Toxicology
Svingen, T., Project Manager, National Food Institute, Research Group for Molecular Toxicology
Taxvig, C., Project Manager, National Food Institute, Research Group for Molecular Toxicology
01/01/2015 → 31/12/2018
Keywords: Chemical Hazards, Risk assessment, Reproductive Health, Cocktail effects, Non-animal technologies, endocrine disrupters
Collaborators: Brunel University
Project: Research

PANDA: Persistent health effects caused by widely used pesticides with antiandrogenic activity
Background:
More and more epidemiological and animal studies indicate that pesticide exposure can contribute to disturbance in the development of the male reproductive system. The effects include malformed genitalia, impaired sperm quality, as well as testicular- and prostate cancer. The development of the male phenotype is fully dependent on the influence of androgens formed in the unborn fetus. Animal studies have shown that several pesticides are able to interfere with the androgenic action in the male fetus, either by blocking the androgen receptor or by reducing androgen production. We have, using an in-house developed computer model, predicted that 8% of all existing chemicals have the ability to block the androgen receptor, indicating that we have only seen the tip of the iceberg. In addition, we have using cell experiments recently found that a number of new pesticides are able to effectively block the androgen receptor. These pesticides are commonly used, and among those with the highest risk of human exposure. In this project a new approach, including cell-based studies addressing anti-androgenic mechanisms, and computer modeling of physiologically-based kinetics (PBK), will be applied of selecting 3 out of 11 pesticides for further study of adverse effects on the male reproductive system. For this a rat model based on in utero exposure and subsequent studies of the male offspring for various defects, hormonal and epigenetic changes, and precursors of prostate cancer will be used. The goal of the project is to provide new knowledge on the potential effects of commonly used pesticides on the unborn fetus, leading to permanent health effects.
Two overall purposes will be fulfilled with this project: 1) To generate new knowledge for human risk assessment of specific pesticides which may form the basis for new risk management initiatives by the authorities and 2) To generate knowledge about the applicability of alternative test methods such as in vitro studies and PBK modeling that may form the basis for suggesting new testing strategies and requirements for pesticides.

The following specific hypotheses will be addressed:

1. A generic PBK model which includes the fetal compartment is capable of covering the ‘chemical space’ of anti-androgens
2. Our PBK model screening tool will be valuable for prioritizing antiandrogenic agents for in vivo testing, when only in vitro assay data are available
3. Pesticides identified as having potent anti-androgenic effects in vitro and evaluated as being able to reach the fetus will display anti-androgenic activities in vivo
4. Persistent epigenetic effects in terms of DNA methylation will be induced in adult rat offspring after perinatal exposure to a male developmental toxicant
5. Perinatal programming by exposure to anti-androgenic pesticides can induce persistent changes in the prostate, thus predisposing the gland to elevated cancer risks

Vinggaard, A. M., Project Participant, National Food Institute, Research Group for Molecular Toxicology
Taxvig, C., Project Participant, National Food Institute, Research Group for Molecular Toxicology
Pedersen, M., Project Participant, National Food Institute, Research group for Analytical Food Chemistry
Kortenkamp, A., Project Participant, Brunel University
Boberg, J., Project Participant, National Food Institute, Research Group for Reproductive Toxicology
Svingen, T., Project Participant, National Food Institute, Research Group for Molecular Toxicology
The Danish Environmental Protection Agency: DKK3,480,381.00
01/08/2013 → 31/05/2016

Collaborators: Brunel University

Award relations: Persistent health effects caused by widely used pesticides with antiandrogenic activity
Project: Research

CEHOS PFC: Endocrine disrupting effects of PFCs: in vitro profiling and effect in rats exposed during development to a PFC plus/minus background exposure to a mixture of known endocrine disrupters

Perfluorinated compounds (PFC) are a diverse group of synthetically produced compounds, with the unique ability to repel water as well as oil - a property making them ideal for multiple purposes in a variety of consumer and industrial products. PFCs have been measured in the environment, as well as in human blood, urine and milk. Due to their long half-life in humans, there is a risk that exposure to these compounds can cause adverse effects. However, except for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), there is a large data gap regarding toxicological information on PFCs. The specific aims of this project are to

- Perform a broad toxicological in vitro profiling of various PFCs to pinpoint critical endocrine activities
- Knowledge building with regards to existing in vitro and in vivo data on endocrine and reproductive toxicity effects of PFCs to be used for selecting the specific PFC and for the planning of dose levels and endpoints for in vivo studies
- Investigate endocrine disrupting effects of developmental exposure to a PFC in experimental animal studies. The focus is adverse effects early and late in life, mixture effects, markers for adverse outcome pathways, as well as potential for non-monotonic dose response and low dose effects
- Provide knowledge relevant for evaluating the current principles for risk assessment of endocrine disrupters with regards to mixture effects, non-monotonic dose-response and low dose effects.

The results of the in vitro profiling of endocrine activity of PFCs is expected to be of value for regulatory considerations on the need for in vivo studies as well as regulatory considerations on how to group PFCs for cumulative risk assessment. The new in vivo data on effects and mode of action of the tested PFC will be of major importance for risk assessment for the specific PFC as well as for this class of compounds in general. If the PFC induces endocrine disrupting effects during development at low doses, this may - together with the critical persistency of PFCs in humans - highlight the need for more PFC studies, and also be an important knowledge with regards to considerations of regulatory actions. The study of potential mixture effects of the PFC with a mixture of known endocrine disrupters is expected to provide further knowledge of relevance for regulatory considerations of grouping of substances for cumulative risk assessment.

Hass, U., Project Manager, National Food Institute, Research Group for Reproductive Toxicology
Vinggaard, A. M., Project Participant, National Food Institute, Research Group for Molecular Toxicology
Christiansen, S., Project Participant, National Food Institute, Research Group for Reproductive Toxicology
Boberg, J., Project Participant, National Food Institute, Research Group for Reproductive Toxicology
Egebjerg, K. M., Project Participant, National Food Institute, Research Group for Reproductive Toxicology
Pedersen, M. A., Project Participant, National Food Institute, Research Group for Reproductive Toxicology
Taxvig, C., Project Participant, National Food Institute, Research Group for Molecular Toxicology
Centre on Endocrine Disrupters: DKK4,800,000.00
01/06/2014 → 31/12/2017

Award relations: Endocrine disrupting effects of PFCs: in vitro profiling and effect in rats exposed during development to a PFC plus/minus background exposure to a mixture of known endocrine disrupters
Project: Research
The obesity epidemic is known being caused by improper nutrition and inactivity, together with genetic predisposition, but it is generally agreed that these factors alone cannot entirely account for the epidemic. The obesogen hypothesis suggests that dietary exposure to low doses of endocrine disrupting chemicals (EDCs) in early periods of vulnerability may increase the risk of obesity in adult life. Also, most EDCs accumulate in fat tissue, which is of the implications for brain development in animals and humans.

Presently, there is no scientifically robust data available for evaluating potential mixture effects on this endpoint and for selecting the best model for predicting the mixture effects, i.e. dose-addition or independent action (DA or IA). Decreased birth weight is a developmental toxicity effect that is likely to be induced via many different and in most cases unknown mechanisms of action. Consequently, it is relevant to study combined effects of pesticides with dissimilar modes of action and evaluate the predictive value by applying both the IA and the DA model.

The focus for the project is:
1. OECD-guideline work: Enhancement of existing regulatory in vivo test methods (OECD TG414, TG 421/422 and TG 443) with regards to detection of endocrine disrupting chemicals
2. Method development related to detection of endocrine disrupters in the new OECD Test Guideline Extended One-generation Study (TG 443) with focus on mammary gland development and females
3. Method development related to thyroid toxicants with focus on human relevance of effects on hormone levels in rats and the implications for brain development in animals and humans.
We study early markers of the metabolic syndrome in relation to the body burden of chemicals in four longitudinal cohorts in whom we have longitudinal measures of growth and metabolism during various stages of development. In addition we test relevant mixtures of chemicals in cellular models of interest for obesity development.

Jensen, T. K., Project Manager, University of Southern Denmark
Vinggaard, A. M., Contact Person, National Food Institute, Division of Toxicology and Risk Assessment
Independent Research Fund Denmark: DKK1,600,000.00
01/01/2009 → 01/09/2014
Collaborators: University of Rochester, University of Southern Denmark, Faroese Hospital System, University of Copenhagen, University of Missouri
Award relations: Dietary exposure to environmental pollutants and the risk of obesity
Project: Research

Test strategy for mixtures of chemicals migrating from food contact materials (FCM)

A multidisciplinary project team develops and validate a test strategy for testing migration of chemicals from food contact materials that may pose a toxicological risk. Substances which have the potential to migrate into food are initially screened for a range of toxicological effects in various in vitro tests. Migrates which produce a positive response in these tests are investigated further by chemical analysis in order to identify the toxic substances. In case of the occurrence of several active substances possible endocrine disrupting “mixture effects” are elucidated. In order to access the food safety risk, migration of identified chemicals into food and/or appropriate food simulants is estimated.

Project financing
This project is part of a major research initiative funded by the National Food Authorities to study the mechanisms and effect of endocrine disrupting chemicals in food.

Petersen, J. H., Project Manager, National Food Institute, Division of Food Chemistry
Trier, X., Project Participant, National Food Institute, Division of Food Chemistry
Hadrup, N., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Dybdahl, M., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Vinggaard, A. M., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Taxvig, C., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Binderup, M., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
01/07/2011 → 31/12/2014
Keywords: migration, mixture effect, endocrine disrupters, in vitro tests, screening analysis, identification
Project: Research

Contamed

In the EU project Contamed, DTU FOOD conducts extended developmental toxicity rat studies investigating the possible role of mixtures of 12-14 estrogens, anti-androgens and other classes of EDCs in producing long-lasting delayed adverse reproductive effects at environmentally relevant levels. The endpoints assessed cover effects on male and female offspring during the postnatal development of the pups as well as long-lasting effects in adult offspring, i.e., anogenital distance, nipple retention, mammary gland development, histopathology and gene expression in selected reproductive organs, puberty, malformations of reproductive organs (hypospadias), oestrus cycling, semen quality and sexual dimorphic behaviour. DTU FOOD will also conduct In vitro assays and is responsible for the H295R assay

Financial support from the EU seventh framework programme (grant agreement no.: 212502) and Danish Environmental Protection Agency.

Hass, U., Project Manager, National Food Institute, Division of Toxicology and Risk Assessment
Kortenkamp, A., Project Manager, University College London
Boberg, J., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Christiansen, S., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Vinggaard, A. M., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Taxvig, C. A., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Petersen, M. A., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
01/05/2008 → 01/11/2012
Keywords: mixtures, endocrine disrupters, human reproductive health, developmental toxicity
Collaborators: Universidad De Granada, Faust und Backhaus Environmental Consulting GBR, University College London, Erasmus MC University Medical Center, University of Sussex, GREEN Tox, University of Bristol, University of London
Project: Research

Mechanisms-of-action of effects caused by anti-androgenic compounds on fetal rat testis development

Combination of 15 + 30 ECTS points for a Masters project.

Anastasiadou, A., Project Participant
Vinggaard, A. M., Supervisor, National Food Institute, Division of Toxicology and Risk Assessment
Svingen, T., Supervisor, National Food Institute, Division of Toxicology and Risk Assessment
Project: Research
PANDA: PANDA - Persistent health effects caused by widely used pesticides with antiandrogenic activity

Background:
More and more epidemiological and animal studies indicate that pesticide exposure can contribute to disturbance in the development of the male reproductive system. The effects include malformed genitalia, impaired sperm quality, as well as testicular- and prostate cancer. The development of the male phenotype is fully dependent on the influence of androgens formed in the unborn fetus.

Animal studies have shown that several pesticides are able to interfere with the androgenic action in the male fetus, either by blocking the androgen receptor or by reducing androgen production. We have, using an in-house developed computer model, predicted that 8% of all existing chemicals have the ability to block the androgen receptor, indicating that we have only seen the tip of the iceberg. In addition, we have using cell experiments recently found that a number of new pesticides are able to effectively block the androgen receptor. These pesticides are commonly used, and among those with the highest risk of human exposure.

In this project a new approach, including cell-based studies addressing anti-androgenic mechanisms, and computer modeling of physiologically-based kinetics (PBK), will be applied of selecting 3 out of 11 pesticides for further study of adverse effects on the male reproductive system. For this a rat model based on in utero exposure and subsequent studies of the male offspring for various defects, hormonal and epigenetic changes, and precursors of prostate cancer will be used. The goal of the project is to provide new knowledge on the potential effects of commonly used pesticides on the unborn fetus, leading to permanent health effects.

Two overall purposes will be fulfilled with this project: 1) To generate new knowledge for human risk assessment of specific pesticides which may form the basis for new risk management initiatives by the authorities and 2) To generate knowledge about the applicability of alternative test methods such as in vitro studies and PBK modeling that may form the basis for suggesting new testing strategies and requirements for pesticides.

The following specific hypotheses will be addressed:
1. A generic PBK model which includes the fetal compartment is capable of covering the ‘chemical space’ of anti-androgens
2. Our PBK model screening tool will be valuable for prioritizing antiandrogenic agents for in vivo testing, when only in vitro assay data are available
3. Pesticides identified as having potent anti-androgenic effects in vitro and evaluated as being able to reach the fetus will display anti-androgenic activities in vivo
4. Persistent epigenetic effects in terms of DNA methylation will be induced in adult rat offspring after perinatal exposure to a male developmental toxicant
5. Perinatal programming by exposure to anti-androgenic pesticides can induce persistent changes in the prostate, thus predisposing the gland to elevated cancer risks.

Vinggaard, A. M., Project Manager, National Food Institute, Division of Toxicology and Risk Assessment
Taxvig, C., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Pedersen, M., Project Participant, National Food Institute, Division of Food Chemistry
Kortenkamp, A., Project Participant, Brunel University
Boberg, J., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Svingen, T., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment

The Danish Environmental Protection Agency: DKK3,480,381.00
01/08/2013 → 31/05/2016
Collaborators: Brunel University
Award relations: PANDA - Persistent health effects caused by widely used pesticides with antiandrogenic activity
Project: Research

Teststrategi for blandinger af stoffer der migrerer fra fødevarekontaktmaterialer

Hadrup, N., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Dybdahl, M., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Vinggaard, A. M., Contact Person, National Food Institute, Division of Toxicology and Risk Assessment
Taxvig, C., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Binderup, M., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment
Trier, X., Contact Person, National Food Institute, Division of Food Chemistry

The Danish Environmental Protection Agency: DKK3,480,381.00
01/07/2011 → 31/12/2014
Collaborators: National Food Institute, Division of Food Chemistry
Award relations: PANDA - Persistent health effects caused by widely used pesticides with antiandrogenic activity
Project: Research

Cocktail: Cocktail - Combination effects of endocrine disrupters

Project background:
Regulation of chemical substances is traditionally based on knowledge of exposure and effects of each substance separately. This requires that one knows how much we humans are exposed to of each compound, as well as the effects of each of compound.

For the last twenty years insufficient knowledge about cocktail effects (the effects that can occur when substances are found together) and the absence of reliable tools for risk assessment of chemical mixtures has been a source of concern, both in regards to regulation of chemicals, but also concerning development of products and productions methods. The
concern has been that the traditional approach to risk assess one substance at a time does not take into account the effects that can occur when substances are found together (cocktail effects).

This concern has led to funding of a 4-year research project, the Cocktail project, supported by the Danish Veterinary and Food Administration (DVFA)

Focus cocktail project:
The focus of the project is the risk of combinations of endocrine disruptors, and the aim of the project is to provide new practical knowledge on combination effects including effects of each substance and for public exposure to these substances.

The primary objectives are:

Specific recommendations for risk assessment of mixtures of substances including:

- Knowledge building in modeling of the combination effects and exposure
- Develop strategy for evaluation of food contact materials
- New potential endocrine disruptors and development of methods to find them
- New technologies to elucidate the effect of chemicals mechanisms such as metabolomics and bioinformatics

The aim is primarily to develop tools for the assessment of combination effects that can actually be used by the DVFA in the risk assessment of chemicals. Currently, these tools are generally non-existent, even at international level, and must be developed from scratch. This means in a broader perspective, that the goal is to build knowledge, develop methods and establish a strong Danish platform at international level in food chemistry and toxicology, which provides the basis for future preparedness in food chemical safety.

The project includes 7 'work packages', each of which focuses on exposure and/or effects and/or risk assessment:

- WP 1 and 2 focuses on experimental work with the aim of generating data and knowledge on toxicological effects.
- WP 3 aims to develop mathematical models, which can be used as in a practical tool for risk assessment of combinations/mixtures developed in WP 7

Exposure to food contaminants is included in the experimental plan in WP 4 and 6, and a practical approach for the assessment of new food contact materials will be developed in WP 5. In WP 5 and WP 6 the studies will address toxicological effects of new potential problem substances (e.g. substances in food contact materials and mycotoxins in crops).

Vinggaard, A. M., Project Manager, National Food Institute, Division of Toxicology and Risk Assessment

Taxvig, C., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment

Hadrup, N., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment

Petersen, A., Project Participant, National Food Institute, Division of Food Chemistry

Petersen, J. H., Project Participant, National Food Institute, Division of Food Chemistry

Rasmussen, P. H., Project Participant, National Food Institute, Division of Food Chemistry

Lykkeberg, A. K., Project Participant, National Food Institute, Division of Food Chemistry

Sharma, A. K., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment

Pedersen, G. A., Project Participant, National Food Institute, Division of Food Chemistry

Frandsen, H. L., Project Participant, National Food Institute, Division of Food Chemistry

Granby, K., Project Participant, National Food Institute, Division of Food Chemistry

Pedersen, M., Project Participant, National Food Institute, Division of Food Chemistry

Binderup, M., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment

Hass, U., Project Participant, National Food Institute, Division of Toxicology and Risk Assessment

Trier, X., Project Participant, National Food Institute, Division of Food Chemistry

Danish Veterinary and Food Administration: DKK35,000,000.00

01/05/2011 → 31/12/2014

Collaborators: Fera Science Ltd., University of Rennes, University of Alberta, Brunel University, United States

Environmental Protection Agency

Award relations: Cocktail - Combination effects of endocrine disruptors

Project: Research

Activities:

EuroTox2020

Period: 6 Sep 2020

Anne Marie Vinggaard (Organizer)

Research group for Molecular and Reproductive Toxicology

National Food Institute

Description

Member of Local Organizing Committee; Responsible for scientific program

Degree of recognition: International
Related event

EuroTox2020: The annual meeting of the European Society of Toxicology
06/09/2020 → 09/09/2020
Copenhagen, Denmark
Activity: Attending an event › Participating in or organising a conference

Food Contact Materials regulation
Period: 18 Feb 2019 → 19 Feb 2019
Anne Marie Vinggaard (Invited speaker)
Research group for Molecular and Reproductive Toxicology
National Food Institute

Description
Presentation on ‘Recycled Paper and Board Food Packaging Materials - are they safe?’
Degree of recognition: International
Links:
https://www.chem-academy.com/fcm

Related external organisation
Chem Academy
Activity: Talks and presentations › Conference presentations

Prediction of Adverse Male Reproductive Health Disorders by integrating In Vitro Data and Physiologically-Based Kinetic Modelling
Period: 22 Nov 2018
Anne Marie Vinggaard (Invited speaker)
Research group for Molecular and Reproductive Toxicology
National Food Institute
Degree of recognition: International

Related event

PBK modeling
22/11/2018 → 23/11/2018
Paris, France
Activity: Talks and presentations › Conference presentations

Prediction of Adverse Male Reproductive Health Effects by integrating In Vitro Data and Physiologically-Based Kinetic Modelling
Period: 8 Nov 2018
Anne Marie Vinggaard (Invited speaker)
Research group for Molecular and Reproductive Toxicology
National Food Institute
Degree of recognition: National

Related event

Annual meeting of the Danish Society of Toxicology and Pharmacology
07/11/2018 → 08/11/2018
Sandbjerg, Denmark
Activity: Talks and presentations › Conference presentations

Transition towards animal-free safety assessment of chemicals
Period: 5 Nov 2018
Anne Marie Vinggaard (Invited speaker)
Prediction of Adverse Male Reproductive Health Effects by integrating In Vitro Data and Physiologically-Based Kinetic Modeling
Period: 17 Oct 2018
Anne Marie Vinggaard (Invited speaker)
Research group for Molecular and Reproductive Toxicology
Copenhagen Center for Health Technology
National Food Institute
Degree of recognition: International

Related event
20th International Congress on In Vitro Toxicology
15/10/2018 → 17/10/2018
Berlin, Germany
Activity: Talks and presentations › Conference presentations

Toxicological profiling of PFAS
Period: 20 Sep 2018
Anne Marie Vinggaard (Invited speaker)
Research group for Molecular and Reproductive Toxicology
National Food Institute
Degree of recognition: International

Related event
Human Biomonitoring for Europe (HBM4EU) - PFAS workshop
20/09/2018 → …
Vienna, Austria
Activity: Talks and presentations › Conference presentations

Prediction of Adverse Male Reproductive Health Effects by integrating In Vitro Data and Physiologically-Based Kinetic Modeling
Period: 4 Sep 2018
Anne Marie Vinggaard (Invited speaker)
National Food Institute
Degree of recognition: International

Related event
54th Congress of the European Societies of Toxicology (EUROTOX 2018)
02/09/2018 → 05/09/2018
Bryssels, Belgium
Keywords: predictive toxicology
Activity: Talks and presentations › Conference presentations

Human health effects caused by low dose pesticide exposure
Period: 20 Aug 2018
Anne Marie Vinggaard (Invited speaker)
Research group for Molecular and Reproductive Toxicology
National Food Institute
Degree of recognition: National

Related external organisation

Coop Danmark A/S
Denmark
Activity: Talks and presentations › Conference presentations

Characterizing molecular mechanisms for short anogenital distance
Period: 4 Jun 2018 → 6 Jun 2018
Camilla Victoria Lindgren Schwartz (Speaker)
Anne Marie Vinggaard (Other)
Terje Svingen (Other)
National Food Institute
Research group for Molecular and Reproductive Toxicology

Related event

5th European Doctoral College on Environment and Health (EDCEH): Endocrine Disruptors: an update
04/06/2018 → 06/06/2018
Activity: Talks and presentations › Conference presentations

Characterizing novel molecular mechanisms for short AGD – a biomarker of fetal testicular function
Period: 23 May 2018 → 27 May 2018
Camilla Victoria Lindgren Schwartz (Speaker)
Anne Marie Vinggaard (Other)
Sofie Christiansen (Other)
Frederic Chalmel (Other)
Terje Svingen (Other)
National Food Institute
Research group for Molecular and Reproductive Toxicology

Related event

20th European Testis Workshop
23/05/2018 → 27/05/2018
Obedos, Portugal
Activity: Talks and presentations › Conference presentations

Glyphosate alone does not adversely affect testicular androgen function in mature rats
Period: 23 May 2018 → 27 May 2018
Hanna Katarina Lilith Johansson (Other)
Lene Nørby Nielsen (Other)
Anne Marie Vinggaard (Other)
Martin Iain Bahl (Other)
Terje Svingen (Speaker)
National Food Institute
Research group for Molecular and Reproductive Toxicology
Copenhagen Center for Health Technology
Research Group for Gut Microbiology and Immunology
Degree of recognition: International
Related event

20th European Testis Workshop
23/05/2018 → 27/05/2018
Obedos, Portugal
Activity: Talks and presentations › Conference presentations

Combination effects of pesticides on birth weight and metabolic programming in rat offspring
Period: 24 Jan 2018 → 25 Jan 2018
Terje Svingen (Invited speaker)
Louise Ramhøj (Other)
Marta Axelstad Petersen (Other)
Sofie Christiansen (Other)
Martin Scholze (Other)
Julie Boberg (Other)
Anne Marie Vinggaard (Other)
Ulla Hass (Other)

National Food Institute
Research group for Molecular and Reproductive Toxicology
Copenhagen Center for Health Technology
Degree of recognition: National

Related event

Miljøstyrelsens Bekæmpelsesmiddelforkningskonference
24/01/2018 → 25/01/2018
Vejle, Denmark
Activity: Talks and presentations › Conference presentations

Emerging Chemicals in Food Packaging: Toxicological Profiling of Knowns and Unknowns
Period: 18 Jan 2018
Anne Marie Vinggaard (Invited speaker)

Research group for Molecular and Reproductive Toxicology
National Food Institute
Degree of recognition: International

Related event

Collaborative on Human Health and the Environment (CHE): Webinar
18/01/2018 → …
Activity: Talks and presentations › Conference presentations

OECD (External organisation)
Period: 2018
Anne Marie Vinggaard (Member)

Research group for Molecular and Reproductive Toxicology
National Food Institute

Description
EAGMST working group: Development of Adverse Outcome Pathways (AOPs)
Degree of recognition: International

Related external organisation

OECD
Paris, France
Activity: Membership › Membership of committees, commissions, boards, councils, associations, organisations, or similar
Transcriptional profiling of the chemically induced feminized male anogenital region
Period: 2018
Camilla Victoria Lindgren Schwartz (Speaker)
Anne Marie Vinggaard (Other)
Sofie Christiansen (Other)
Frederic Chalmel (Other)
Terje Svingen (Other)
Research group for Molecular and Reproductive Toxicology
National Food Institute

Related event
Annual Meeting Danish Society for Toxicology and Pharmacology: Biomarkers in predictive toxicology and pharmacology: risk assessment
08/11/2018 → 09/11/2018
Sønderborg, Denmark
Activity: Talks and presentations › Conference presentations

Transcriptional profiling of the chemically induced feminized male rat anogenital region
Period: 2018
Camilla Victoria Lindgren Schwartz (Speaker)
Anne Marie Vinggaard (Other)
Sofie Christiansen (Other)
Frederic Chalmel (Other)
Terje Svingen (Other)
Research group for Molecular and Reproductive Toxicology
National Food Institute

Related event
4th ReproYoung Conference 2018
25/10/2018 → 26/10/2018
Ystad, Sweden
Activity: Talks and presentations › Conference presentations

Mechanisms of action involved in chemically induced effects on male reproductive health
Period: 30 Mar 2017 → 31 Mar 2017
Camilla Victoria Lindgren Schwartz (Speaker)
Sofie Christiansen (Other)
Anne Marie Vinggaard (Other)
Terje Svingen (Other)
National Food Institute
Research group for Molecular and Reproductive Toxicology
Degree of recognition: Regional

Related event
3rd ReproYoung Conference
30/03/2017 → 31/03/2017
Båstad, Sweden
Activity: Talks and presentations › Conference presentations

Late-life effects on testosterone production following in utero exposure to the pesticide fludioxonil
Terje Svingen (Speaker)
Camilla Taxvig (Other)
Julie Boberg (Other)
Jorma Toppari (Other)
Ulla Hass (Other)
Anne Marie Vinggaard (Other)

National Food Institute
Research group for Molecular and Reproductive Toxicology
Copenhagen Center for Health Technology
Degree of recognition: International

Related event

19th European Testis Workshop : Molecular and Cellular Endocrinology
11/06/2016 → 15/06/2016
Saint Malo, France
Activity: Talks and presentations › Conference presentations

European Society of In Vitro Toxicology (External organisation)
Period: 2016
Anne Marie Vinggaard (Member)
Research group for Molecular and Reproductive Toxicology
National Food Institute
Degree of recognition: International
Links:
http://www.estiv.org/ (ESTIV)

Related external organisation

European Society of In Vitro Toxicology
Activity: Membership › Membership of committees, commissions, boards, councils, associations, organisations, or similar

Bisphenol A and five structural analogues induce adipocyte differentiation and other obesity-related endpoints in 3T3-L1 cells
Period: 27 Apr 2015 → 30 Apr 2015
Cecilie Nethe Ramskov Tetzlaff (Other)
Terje Svingen (Other)
Anne Marie Vinggaard (Other)
Camilla Taxvig (Other)
National Food Institute
Research group for Molecular and Reproductive Toxicology
Copenhagen Center for Health Technology

Related event

8th Copenhagen Workshop on Endocrine Disrupters
27/04/2015 → 30/04/2015
Copenhagen, Denmark
Activity: Talks and presentations › Conference presentations

Effects of chemical mixtures on female reproductive endpoints
Period: 27 Apr 2015 → 30 Apr 2015
Hanna Katarina Lilith Johansson (Other)
Anne Marie Vinggaard (Other)
Terje Svingen (Other)
Ulla Hass (Other)
Emerging Chemicals in food packaging - toxicological profiling of knowns and unknowns
Period: 27 Apr 2015 → 30 Apr 2015
Anna Kjerstine Rosenmai (Other)
Linda Bengtström (Other)
Barbara van Vugt-Lussenburg (Other)
Jens Højslev Petersen (Other)
Camilla Taxvig (Other)
Terje Svingen (Other)
Laurianne Lesné (Other)
Mona-Lise Binderup (Speaker)
Marianne Dybdahl (Other)
Cecilie Nethe Ramskov Tetzlaff (Other)
Bernard Jégou (Other)
Xenia Trier (Other)
Anne Marie Vinggaard (Speaker)
National Food Institute
Research group for Molecular and Reproductive Toxicology
Copenhagen Center for Health Technology
Degree of recognition: International
Related event
8th Copenhagen Workshop on Endocrine Disrupters
27/04/2015 → 30/04/2015
Copenhagen, Denmark
Activity: Talks and presentations › Conference presentations

Mixture effects of twenty-seven environmental contaminants given to rats at doses comparable to human exposure
Period: 27 Apr 2015 → 30 Apr 2015
Niels Hadrup (Other)
Terje Svingen (Other)
Karen Riiber Mandrup (Other)
Hanne Frederiksen (Other)
Kasper Skov (Other)
Henrik Lauritz Frandsen (Other)
Anne Marie Vinggaard (Other)
National Food Institute
Research group for Molecular and Reproductive Toxicology
Research group for Analytical Food Chemistry
Copenhagen Center for Health Technology
Degree of recognition: International

Related event

8th Copenhagen Workshop on Endocrine Disrupters
27/04/2015 → 30/04/2015
Copenhagen, Denmark
Activity: Talks and presentations › Conference presentations

External examiner at University of Copenhagen 2012-2021
Period: 2012
Anne Marie Vinggaard (External examiner)
Research group for Molecular and Reproductive Toxicology
National Food Institute
Degree of recognition: Local
Activity: Examinations and supervision › External examination

Organisation for Economic Co-operation and Development OECD (External organisation)
Period: 2010 → …
Anne Marie Vinggaard (Member)
Research group for Molecular and Reproductive Toxicology
National Food Institute

Description
‘Validation Management Group - Non Animal’ under OECD der sørger for validering af in vitro tests mhp. udvikling af test guidelines

Representative of Denmark.

Body type: International expert panel
Degree of recognition: International

Related external organisation

Organisation for Economic Co-operation and Development OECD
France
Keywords: in vitro tests, endocrine disruptor
Activity: Membership › Membership of committees, commissions, boards, councils, associations, organisations, or similar

Press clippings:

Risikovurdering af fluorstoffer
Anne Marie Vinggaard
12/02/2018
National Food Institute, Copenhagen Center for Health Technology, Research group for Molecular and Reproductive Toxicology

Media coverage (1)

Risikovurdering af fluorstoffer
12/02/2018
Politiken (National), Denmark, Print
Mette Guldager
Anne Marie Vinggaard
Research group for Molecular and Reproductive Toxicology, Copenhagen Center for Health Technology, National Food Institute
Press/Media: Press / Media
Faldende sædkvalitet og stigende forekomst af kryptorkisme i hunde
Anne Marie Vinggaard
16/11/2017
National Food Institute, Copenhagen Center for Health Technology, Research group for Molecular and Reproductive Toxicology

Media coverage (1)

Sundhedsskadelige stoffer i fødevarekontaktmateriale
Anne Marie Vinggaard
19/09/2017
National Food Institute, Copenhagen Center for Health Technology, Research group for Molecular and Reproductive Toxicology

Media coverage (1)

Strategi til at teste for sundhedsskadelige stoffer i fødevarekontaktmateriale
19/09/2017
Ingeniøren (National), Denmark, Web
Henrik Winther
Anne Marie Vinggaard
Copenhagen Center for Health Technology, National Food Institute, Research group for Molecular and Reproductive Toxicology

Press/Media: Press / Media

Information om brug af fluorstoffer og deres toksicitet
Anne Marie Vinggaard
05/10/2016
National Food Institute, Research Group for Molecular Toxicology, Copenhagen Center for Health Technology

Media contribution (1)
Cocktail effekter og fødevarekontaktmaterialer
Anne Marie Vinggaard
29/08/2016

Subject
Cocktail effekter og fødevarekontaktmaterialer
National Food Institute, Research Group for Molecular Toxicology, Copenhagen Center for Health Technology

Media contribution (1)

Cocktail effekter og fødevarekontaktmaterialer
29/08/2016
Ritzau, Web
Kristine Dam
Anne Marie Vinggaard
Copenhagen Center for Health Technology, National Food Institute, Research Group for Molecular Toxicology
Press/Media: Press / Media

Ny undersøgelse vedr. Round Up og hjælpestoffers effekt på aromatase aktivitet
Anne Marie Vinggaard
03/03/2016
National Food Institute, Research Group for Molecular Toxicology, Copenhagen Center for Health Technology

Media contribution (1)

Ny undersøgelse vedr. Round Up og hjælpestoffers effekt på aromatase aktivitet
03/03/2016
Ingeniøren, Web
Mia Stage
Anne Marie Vinggaard
Copenhagen Center for Health Technology, National Food Institute, Research Group for Molecular Toxicology
Press/Media: Press / Media

Cocktail effekter
Anne Marie Vinggaard
20/11/2015

Subject
Cocktail effekter
National Food Institute, Research Group for Molecular Toxicology

Media contribution (1)

Cocktail effekter
20/11/2015
Politikken, Print
Line Selholt
Anne Marie Vinggaard
National Food Institute, Research Group for Molecular Toxicology
Press/Media: Press / Media

Genbrugsemballage – kemikalier og sundhed
Anne Marie Vinggaard
19/10/2015

Subject
Genbrugsemballage – kemikalier og sundhed
National Food Institute, Research Group for Molecular Toxicology
Genbrugsemballage – kemikalier og sundhed
19/10/2015
Politiken, Print
Mette Lützhøft
Anne Marie Vinggaard
National Food Institute, Research Group for Molecular Toxicology
Press/Media: Press / Media

Cocktail effekter
Anne Marie Vinggaard
17/09/2015

Subject
Cocktail effekter
National Food Institute, Research Group for Molecular Toxicology

Fluorkemikalier. Grandjean & Co har publiceret en artikel om fluorkemikalier i nyfødte
Anne Marie Vinggaard
19/08/2015

Subject
Fluorkemikalier. Grandjean & Co har publiceret en artikel om fluorkemikalier i nyfødte
National Food Institute, Research Group for Molecular Toxicology

Fluorkemikalier. Grandjean & Co har publiceret en artikel om fluorkemikalier i nyfødte
19/08/2015
Politikken, Print
Lars igum Rasmussen
Anne Marie Vinggaard
National Food Institute, Research Group for Molecular Toxicology
Press/Media: Press / Media
Cocktailprojektet
Anne Marie Vinggaard
09/06/2015

Subject
Cocktailprojektet
National Food Institute, Research Group for Molecular Toxicology

Media contribution (1)

Cocktailprojektet
09/06/2015
DR P1, Radio
Johanne Friis Mariager
Anne Marie Vinggaard
National Food Institute, Research Group for Molecular Toxicology
Press/Media: Press / Media

self.com
Anne Marie Vinggaard
27/05/2015
National Food Institute, Research Group for Molecular Toxicology

Media contribution (1)

self.com
27/05/2015
Margaret Hargrove, Web
self.com
Anne Marie Vinggaard
National Food Institute, Research Group for Molecular Toxicology
Press/Media: Press / Media

Cocktail effekter
Anne Marie Vinggaard
22/05/2015

Subject
Cocktail effekter
National Food Institute, Research Group for Molecular Toxicology

Media contribution (1)

Cocktail effekter
22/05/2015
Tænk, Print
Anne-Helene Terkelsen
Anne Marie Vinggaard
National Food Institute, Research Group for Molecular Toxicology
Press/Media: Press / Media

Vedr. toksicitet af PFC i emballager
Anne Marie Vinggaard
18/05/2015

Subject
Vedr. toksicitet af PFC i emballager
National Food Institute, Research Group for Molecular Toxicology

Media contribution (1)

Vedr. toksicitet af PFC i emballager
18/05/2015
Ny undersøgelse vedr. sammenhæng ml. abortrisiko og perfluorerede kemikalier
Anne Marie Vinggaard
24/04/2015

Subject
Ny undersøgelse vedr. sammenhæng ml. abortrisiko og perfluorerede kemikalier
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

Cocktail effekter
Anne Marie Vinggaard
14/04/2015

Subject
Cocktail effekter
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

Cocktail effekter
Anne Marie Vinggaard
31/03/2015

Subject
Cocktail effekter
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

Cocktail effekter
Anne Marie Vinggaard
24/03/2015

Subject
Cocktail effekter
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)
Cocktail effekter
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

Cocktail effekter
24/03/2015
Food Navigator, Web
Caroline Scott-Thomas
Anne Marie Vinggaard
National Food Institute, Division of Toxicology and Risk Assessment
Press/Media: Press / Media

Cocktail effekter
Anne Marie Vinggaard
19/03/2015

Subject
Cocktail effekter
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

Cocktail effekter
19/03/2015
Dansk landbrug og Fødevarer – Food Culture, Web
Mads Pedersen
Anne Marie Vinggaard
National Food Institute, Division of Toxicology and Risk Assessment
Press/Media: Press / Media

Cocktail effekter
Anne Marie Vinggaard
19/03/2015

Subject
Cocktail effekter
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

Cocktail effekter
19/03/2015
DR, Television
Jacob Andresen
Anne Marie Vinggaard
National Food Institute, Division of Toxicology and Risk Assessment
Press/Media: Press / Media

Cocktail effekter
Anne Marie Vinggaard
18/03/2015

Subject
Cocktail effekter
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

Cocktail effekter
18/03/2015
Dr.dk Lev.nu, Web
Lisa Kristensen
Anne Marie Vinggaard
DEHP fundet i plastikarmbånd til børn
Anne Marie Vinggaard
05/02/2015

Subject
DEHP fundet i plastikarmbånd til børn
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

DEHP fundet i plastikarmbånd til børn
05/02/2015
Politiken, Web
Laura Rabøl
Anne Marie Vinggaard
National Food Institute, Division of Toxicology and Risk Assessment
Press/Media: Press / Media

Afsmitning af kemiske stoffer fra madpapir, herunder flu-orstoffer
Anne Marie Vinggaard
12/08/2014

Subject
Afsmitning af kemiske stoffer fra madpapir, herunder flu-orstoffer
National Food Institute, Division of Toxicology and Risk Assessment

Media contribution (1)

Afsmitning af kemiske stoffer fra madpapir, herunder flu-orstoffer
12/08/2014
Freelance journalist, Print
Ramus Bitsch
Anne Marie Vinggaard
National Food Institute, Division of Toxicology and Risk Assessment
Press/Media: Press / Media