Modeling the Anisotropic Reflectance of a Surface with Microstructure Engineered to Obtain Visible Contrast after Rotation

Engineering of surface structure to obtain specific anisotropic reflectance properties has interesting applications in large scale production of plastic items. In recent work, surface structure has been engineered to obtain visible reflectance contrast when observing a surface before and after rotating it 90 degrees around its normal axis. We build an analytic anisotropic reflectance model based on the microstructure engineered to obtain such contrast. Using our model to render synthetic images, we predict the above mentioned contrasts and compare our predictions with the measurements reported in previous work. The benefit of an analytical model like the one we provide is its potential to be used in computer vision for estimating the quality of a surface sample. The quality of a sample is indicated by the resemblance of camera-based contrast measurements with contrasts predicted for an idealized surface structure. Our predictive model is also useful in optimization of the microstructure configuration, where the objective for example could be to maximize reflectance contrast.

Virtual reality inspection and painting with measured BRDFs

Virtual reality inspection and painting with measured BRDFs

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics
Authors: Dal Corso, A. (Intern), Stets, J. D. (Intern), Luongo, A. (Intern), Nielsen, J. B. (Intern), Frisvad, J. R. (Intern), Aanæs, H. (Intern)
Number of pages: 2
Publication date: 2017

Host publication information
Title of host publication: Proceedings of SA ’17 VR Showcase
Main Research Area: Technical/natural sciences
Designing for Color in Additive Manufacturing
In this paper we present a color design pipeline for 3D printed or additively manufactured parts. We demonstrate how to characterize and calibrate a commercial printer and how to obtain its forward and backward color transformation models. We present results from our assistive color design tool, allowing for colorimetric accurate prints and visualization of the printed outcome, prior to print. Lastly, we demonstrate our pipeline by accurately reproducing a real physical object.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, Department of Mechanical Engineering, Manufacturing Engineering
Pages: 98-102
Publication date: 2016

Host publication information
Title of host publication: Proceedings of the ASPE/euspen 2016 Summer Topical Meeting on Dimensional Accuracy and Surface Finish in Additive Manufacturing
Publisher: ASPE – The American Society for Precision Engineering
ISBN (Print): 978-1-887706-71-1
Main Research Area: Technical/natural sciences
Publication: Research - peer-review › Article in proceedings – Annual report year: 2016

Projects:

Material Appearance Prediction
Technical University of Denmark
Period: 15/12/2015 → 14/12/2018
Number of participants: 3
Phd Student:
Luongo, Andrea (Intern)
Supervisor:
Aanæs, Henrik (Intern)
Main Supervisor:
Frisvad, Jeppe Revall (Intern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU)
Project: PhD