Andrea Cuttone - DTU Orbit (03/02/2018)

Andrea Cuttone

Organisations

PhD Student, Department of Applied Mathematics and Computer Science
22/05/2013 → 03/02/2017 Former
ancu@dtu.dk
VIP

Department of Applied Mathematics and Computer Science
05/01/2017 → 03/02/2017 Former
ancu@dtu.dk
VIP

Cognitive Systems
14/08/2013 → 03/02/2017 Former
VIP

Publications:

Understanding predictability and exploration in human mobility
Predictive models for human mobility have important applications in many fields including traffic control, ubiquitous computing, and contextual advertisement. The predictive performance of models in literature varies quite broadly, from over 90% to under 40%. In this work we study which underlying factors - in terms of modeling approaches and spatio-temporal characteristics of the data sources - have resulted in this remarkably broad span of performance reported in the literature. Specifically we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users observed for periods between 3 months and one year. We show that it is much easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover, we demonstrate how the temporal and spatial resolution of the data have strong influence on the accuracy of prediction. Finally we reveal that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our ability to predict human mobility.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, Massachusetts Institute of Technology
Authors: Cuttone, A. (Intern), Jørgensen, S. L. (Intern), González, M. C. (Ekstern)
Number of pages: 17
Pages: 1-17
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information
Journal: Epj Data Science
Volume: 7
Issue number: 2
ISSN (Print): 2193-1127
Ratings:
Web of Science (2018): Indexed yes
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.05 SJR 0.879 SNIP 1.16
Scopus rating (2015): SJR 0.943 SNIP 1.453 CiteScore 3.51
Scopus rating (2014): SJR 1.378 SNIP 2.789
Scopus rating (2013): SJR 1.167 SNIP 1.687
Original language: English
Human mobility, Next-location prediction, Predictability
Electronic versions:
filestore_1_.pdf
DOIs:
10.1140/epjds/s13688-017-0129-1
Data Mining and Visualization of Large Human Behavior Data Sets

Traditional methods for studying human behavior such as surveys and manual collection are expensive, time-consuming and therefore cannot be easily applied at large scale. In recent years an explosive amount of digital traces of human activity – for example social network interactions, emails and credit card transactions – have provided us new sources for studying our behavior. In particular smartphones have emerged as new tools for collecting data about human activity, thanks to their sensing capabilities and their ubiquity. This thesis investigates the question of what we can learn about human behavior from this rich and pervasive mobile sensing data. In the first part, we describe a large-scale data collection deployment collecting high-resolution data for over 800 students at the Technical University of Denmark using smartphones, including location, social proximity, calls and SMS. We provide an overview of the technical infrastructure, the experimental design, and the privacy measures. The second part investigates the usage of this mobile sensing data for understanding personal behavior. We describe two large-scale user studies on the deployment of self-tracking apps, in order to understand the patterns of usage and non-usage. Moreover we provide some design guidelines for facilitating reflection in self-tracking systems. Finally we propose a model for inferring sleep patterns from smartphone interactions.

In the third part, we focus on a specific aspect of collective behavior: human mobility. We perform an experiment to verify the feasibility of inferring places from location traces using mobile sensing data. We develop a hierarchical model for human mobility, which is able to measure mobility properties at multiple scales. We perform a study on the factors influencing the accuracy of nextplace prediction models. Finally we present an open-source tool for creating geographical visualizations.

SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events

We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals’ daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient.
Four Data Visualization Heuristics to Facilitate Reflection in Personal Informatics

In this paper we discuss how to facilitate the process of reflection in Personal Informatics and Quantified Self systems through interactive data visualizations. Four heuristics for the design and evaluation of such systems have been identified through analysis of self-tracking devices and apps. Dashboard interface paradigms in specific self-tracking devices (Fitbit and Basis) are discussed as representative examples of state of the art in feedback and reflection support. By relating to existing work in other domains, such as event related representation of time series multivariate data in financial analytics, it is discussed how the heuristics could guide designs that would further facilitate reflection in self-tracking personal informatics systems.

Inferring Human Mobility from Sparse Low Accuracy Mobile Sensing Data

Understanding both collective and personal human mobility is a central topic in Computational Social Science. Smartphone sensing data is emerging as a promising source for studying human mobility. However, most literature focuses on high-precision GPS positioning and high-frequency sampling, which is not always feasible in a longitudinal study or for everyday applications because location sensing has a high battery cost. In this paper we study the feasibility of inferring human mobility from sparse, low accuracy mobile sensing data. We validate our results using participants’ location diaries, and analyze the inferred geographical networks, the time spent at different places, and the number of unique places over time. Our results suggest that low resolution data allows accurate inference of human mobility patterns.
Measuring Large-Scale Social Networks with High Resolution

This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1,000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, University of Copenhagen
Authors: Stopczynski, A. (Intern), Sekara, V. (Intern), Sapiezynski, P. (Intern), Cuttone, A. (Intern), Madsen, M. M. (Ekstern), Larsen, J. E. (Intern), Lehmann, S. (Intern)
Number of pages: 24
Publication date: 2014
Main Research Area: Technical/natural sciences

Publication information

Journal: PLOS ONE
Volume: 9
Issue number: 4
Article number: e95978
ISSN (Print): 1932-6203
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 3.11 SJR 1.201 SNIP 1.092
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): SJR 1.414 SNIP 1.131 CiteScore 3.32
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): SJR 1.545 SNIP 1.141 CiteScore 3.54
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): SJR 1.74 SNIP 1.147 CiteScore 3.94
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): SJR 1.945 SNIP 1.142 CiteScore 4.15
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 1
The Long Tail Issue in Large Scale Deployment of Personal Informatics
We describe the challenges and the open questions arising during the design and deployment of SensibleJournal, a mobile personal informatics system with interactive visualizations of mobility and social interactions based on data acquired from embedded smartphone sensors. The SensibleJournal system was evaluated in a large scale (N=136) mobile sensing field study. We report issues in deployment, limitations in user engagement and uptake, and the challenges in measuring the effect of the system.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems
Authors: Cuttone, A. (Intern), Larsen, J. E. (Intern)
Pages: 691-694
Publication date: 2014

Host publication information
Title of host publication: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication
ISBN (Print): 978-1-4503-3047-3
Main Research Area: Technical/natural sciences
DOIs:
10.1145/2638728.2641319
Source: PublicationPreSubmission
Source-ID: 101280501
Publication: Research - peer-review › Article in proceedings – Annual report year: 2014

Visualizing multi-channel networks
In this paper, we propose a visualization to illustrate social interactions, built from multiple distinct channels of communication. The visualization displays a summary of dense personal information in a compact graphical notation. The starting point is an abstract drawing of a spider’s web. Below, we describe the meaning of each data dimension along with
the background and motivation for their inclusion. Finally, we present feedback provided by the users (31 individuals) of the visualization.

Visualizing QS Data Using Time Spirals

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems
Authors: Antemijczuk, P. (Ekstern), Magiera, M. (Ekstern), Jørgensen, S. L. (Intern), Cuttone, A. (Intern), Larsen, J. E. (Intern)
Pages: 5-9
Publication date: 2014

Host publication information
Title of host publication: Poster Proceedings of the 22nd International Conference in Central Europe on Computer Graphics and Visualization (WSCG 2014)
Publisher: Vaclav Skala - Union Agency
Editor: Skala, V.
ISBN (Print): 978-80-86943-72-5
Main Research Area: Technical/natural sciences
Conference: 22nd International Conference in Central Europe on Computer Graphics and Visualization (WSCG 2014), Plzen, Czech Republic, 02/06/2014 - 02/06/2014
Multi-channel data, social networks, visualization, personal data, social interaction
Electronic versions:
WSCG.pdf
Links:
http://wscg.zcu.cz/DL/wscg_DL.htm
Source: PublicationPreSubmission
Source-ID: 101280541
Publication: Research - peer-review › Article in proceedings – Annual report year: 2014

A Mobile Personal Informatics System with Interactive Visualizations of Mobility and Social Interactions

We describe a personal informatics system for Android smartphones that provides personal data on mobility and social interactions through interactive visualization interfaces. The mobile app has been made available to N=136 first year university students as part of a study of social network interactions in a university campus setting. The design of the interactive visualization interfaces enabling the participants to gain insights into own behaviors is described. We report initial findings based on device logging of participant interactions with the interactive visualization app on the smartphone and from a survey on usage with response from 45 (33%) of the participants indicating that the system allowed new insights into behavioral patterns.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems
Authors: Cuttone, A. (Intern), Jørgensen, S. L. (Intern), Larsen, J. E. (Intern)
Pages: 27-30
Publication date: 2013

Host publication information
Title of host publication: Proceedings of the 1st ACM international workshop on Personal data meets distributed multimedia: PDM ’13
Publisher: Association for Computing Machinery
ISBN (Print): 978-1-4503-2397-0
QS Spiral: Visualizing Periodic Quantified Self Data

In this paper we propose an interactive visualization technique QS Spiral that aims to capture the periodic properties of quantified self data and let the user explore those recurring patterns. The approach is based on time-series data visualized as a spiral structure. The interactivity includes the possibility of varying the time span and the time frame shown, allowing for different levels of detail and the discoverability of repetitive patterns in the data on multiple scales. We illustrate the capabilities of the visualization technique using two quantified self data sets involving self-tracking of geolocation and physical activity respectively.

General Information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems
Authors: Larsen, J. E. (Intern), Cuttone, A. (Intern), Jørgensen, S. L. (Intern)
Number of pages: 4
Publication date: 2013

Host publication information
Title of host publication: Proceedings of CHI 2013 Workshop on Personal Informatics in the Wild: Hacking Habits for Health & Happiness
Main Research Area: Technical/natural sciences
Electronic versions: chi2013_pi.pdf
Source: dtu
Source-ID: u::10001
Publication: Research - peer-review › Article in proceedings – Annual report year: 2013

Data mining and visualization of human behavior data sets

Department of Applied Mathematics and Computer Science
Period: 01/08/2013 → 15/03/2017
Number of participants: 6
Phd Student: Cuttone, Andrea (Intern)
Supervisor: Jørgensen, Sune Lehmann (Intern)
Main Supervisor: Larsen, Jakob Eg (Intern)
Examiner: Bardram, Jakob Eyvind (Intern)
Kjærgaard, Mikkel Baun (Ekstern)
Musolesi, Mirco (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: Institut stipendie (DTU)

Relations
Publications:
Data Mining and Visualization of Large Human Behavior Data Sets
Project: PhD