Efficient Unbiased Rendering using Enlightened Local Path Sampling

Most global illumination algorithms today solve the light transport problem using Monte Carlo ray tracing. These algorithms are capable of producing photo-realistic imagery and in addition have few limitations with respect to the kind of input (geometry, reflection models, etc.) they support. The downside to using these algorithms is that they can be slow to converge. Due to the nature of Monte Carlo methods, the results are random variables subject to variance. This manifests itself as noise in the images, which can only be reduced by generating more samples. The reason these methods are slow is because of a lack of effective methods of importance sampling. Most global illumination algorithms are based on local path sampling, which is essentially a recipe for constructing random walks. Using this procedure paths are built based on information given explicitly as part of scene description, such as the location of the light sources or cameras, or the reflection models at each point. In this work we explore new methods of importance sampling paths. Our idea is to analyze the scene before rendering and compute various statistics that we use to improve importance sampling. The first of these are adjoint measurements, which are the solution to the adjoint light transport problem. The second is a representation of the distribution of radiance and importance in the scene. We also derive a new method of particle sampling, which is advantageous compared to existing methods. Together we call the resulting algorithm enlightened local path sampling and demonstrate how the algorithm improves efficiency in some hard scenes.
The propagation of ultrasound in an austenitic weld

The propagation of ultrasound through an austenitic weld is investigated experimentally as well as in a numerical simulation. The weld is insonified at normal incidence to the fusion line with a longitudinal contact transducer. In order to experimentally trace the ultrasound through the weld, slices of different thicknesses from the original weld have been fabricated. Through-transmission A-scans have then been produced for each weld slice and compared with the corresponding numerical simulation. A comparison of the direction of ultrasound propagation through the weld for the two approaches shows quite good agreement. However, attenuation due to scattering at grain boundaries in the weld is poorly modelled in the simulation. In order to improve this, a better model of the weld is needed.

General information
State: Published
Organisations: Department of Informatics and Mathematical Modeling
Authors: Halkjær, S. (Intern), Sørensen, M. P. (Intern), Kristensen, A. W. (Intern)
Pages: 256-261
Publication date: 2000
Conference: 1st Joint Meeting Ultrasonics International 99 and 1999 World Congress on Ultrasonics (UI 99/WCU 99), Lyngby, Denmark, 29/06/1999 - 29/06/1999
Main Research Area: Technical/natural sciences

Publication information
Journal: Ultrasonics
Volume: 38
Issue number: 1-8
ISSN (Print): 0041-624X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): SNIP 1.714 SJR 0.973 CiteScore 2.72
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.51 SJR 0.834 SNIP 1.728
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.708 SNIP 1.655 CiteScore 2.23
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.848 SNIP 2.156 CiteScore 2.41
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.67 SNIP 1.727 CiteScore 2.12
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.675 SNIP 1.886 CiteScore 2.09
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.707 SNIP 1.72 CiteScore 2.2
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.745 SNIP 1.493
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.587 SNIP 1.31
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.582 SNIP 1.082
Scopus rating (2007): SJR 0.674 SNIP 1.023
Scopus rating (2006): SJR 0.696 SNIP 1.832
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.729 SNIP 1.101
Scopus rating (2004): SJR 0.762 SNIP 1.452
Scopus rating (2003): SJR 0.7 SNIP 0.928
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.577 SNIP 1.414
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.578 SNIP 0.782
Scopus rating (2000): SJR 0.859 SNIP 1.031
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.646 SNIP 0.991
Original language: English
Austenitic weld, Comparison, Experiment, Numerical simulation, Ultrasound
DOIs:
10.1016/S0041-624X(99)00103-1
Source: orbit
Source-ID: 176404
Publication: Research - peer-review › Conference article – Annual report year: 2000

Projects:

Lighting Design and Real-time Global Illumination

Department of Informatics and Mathematical Modeling
Period: 01/02/2006 → 30/03/2011
Number of participants: 5
Phd Student:
Kristensen, Anders Wang (Intern)
Main Supervisor:
Christensen, Niels Jørgen (Intern)
Examiner:
Bærentzen, Jakob Andreas (Intern)
Henriksen, Knud (Ekstern)
Myszkowski, Karol (Ekstern)

Financing sources
Source: Internal funding (public)
Name of research programme: DTU-lønnet stipendie
Project: PhD