Discontinuity effects in dynamically loaded tilting pad journal bearings

This paper describes two discontinuity effects that can occur when modelling radial tilting pad bearings subjected to high dynamic loads. The first effect to be treated is a pressure build-up discontinuity effect. The second effect is a contact-related discontinuity that disappears when a contact force is included in the theoretical model. Methods for avoiding the pressure build-up discontinuity effect are proposed.

General information
Publication status: Published
Organisations: Solid Mechanics, Department of Mechanical Engineering
Contributors: Thomsen, K., Klit, P., Vølund, A.
Pages: 663-670
Publication date: 2011
Peer-reviewed: Yes

Publication information
Volume: 225
Issue number: 7
ISSN (Print): 1350-6501
Ratings:
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.8 SJR 0.693 SNIP 1.194
Web of Science (2011): Impact factor 0.733
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Original language: English
Keywords: Contact force, Radial tilting pad journal bearing, Dynamic loads, Discontinuity
DOI:
10.1177/1350650111403037
URLs:
Source: orbit
Source-ID: 278189
Research output: Contribution to journal › Conference article – Annual report year: 2011 › Research › peer-review

Measurement and Calculation of Frictional Loss in Large Two-Stroke Engines
The total frictional loss in a large two-stroke marine diesel engine is rather well determined. However, the contribution (size and distribution) from the different machine elements are not well known. The aim of this study is to establish methods to measure and calculate friction in the piston assembly and guide shoe system for a large two-stroke marine diesel engine. These components are the two major contributors to the total friction in a two-stroke marine diesel engine. The piston pack represents approximately 60% of the total mechanical loss at full load and the guide shoe system 23%. The rest of the mechanical loss is situated in the piston rod 2%, piston skirt 3% and main bearings and connecting rod bearing 12%. Information about the friction distribution can be used in future design of these machine elements.
Theoretical models for determination of frictional losses for both aforementioned bearing types are presented.
Experiments revealing the size and distribution frictional loss are carried out. The results of the friction measurements are used for verification of theoretical models. This requires additional information such as oil film thickness, pressure and
temperature. These parameters are measured and compared with simulations. Studies concerning reduction of the overall frictional loss for both bearings are carried out.

Measurement of oil film thickness and friction force on a guide shoe bearing
An experimental program was carried out in order to reveal oil film thickness, and friction force of the guide shoe bearing of a large two stroke marine diesel engine. The experiment was conducted on a full size engine located at the research facility at MAN B&W Diesel A/S. The experiment was conducted such that the influence from the experiment on the characteristics were as small as possible. The objective of the experiment was to determine the frictional loss of this bearing and to check whether a suggested numerical model was applicable or not. Some future aspects for this bearing are presented regarding optimization.

Shaft centre orbit for dynamically loaded radial bearings
The aim of this work is to demonstrate how to utilize the bearings damping coefficients to estimate the orbit for a dynamically loaded journal bearing. The classical method for this analysis was developed by Booker in 1965 Booker1 and described further in 1972 Booker2. Several authors have refined this method over the years. In 1966 Jorgen W. Lund published an approach to find the dynamic coefficients of a journal bearing by a first order perturbation of the Reynold’s equation. These coefficients made it possible to perform a rotor-bearing stability analysis for a statically loaded bearing. In the mid seventies Jorgen W. Lund pointed out in lecture notes that the dynamic damping coefficients of the bearing could be used to find the shaft orbit for dynamically loaded bearings. For simplicity the "Short-Width-Journal-Bearing Theory" is used as a basis for finding the damping coefficients in this work, but the method is general and the damping coefficients could have been found also by numerical solutions.
On the interaction between structure and oil film of a guide shoe bearing

A solution procedure for the determination of the oil film thickness of a guide shoe bearing for a large two stroke marine diesel engine is presented. Based on a previous study considering oil film thickness of a guide shoe bearing with rigid structural parts a model for the interaction between structure and oil film is implemented. The model takes into account the elastic deformation of the bearing parts. An iterative procedure for determining pressure, deformation and squeeze velocity is applied. The results are compared to a traditional calculation of rigid components. The model of the structure is a 3D finite element model and the oil film description is made using a 2D finite difference mesh.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering
Contributors: Vølund, A.
Publication date: 2001

Host publication information
Title of host publication: 2nd World Tribology Conference - WTC 2001
Source: orbit
Source-ID: 64215
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2001 › Research › peer-review

Projects:

Experimental and numerical investigation of friction, power loss and lubricant transport between a piston ring and cylinder liner in a heavy duty diesel engine.
Overgaard, H. T., Project Participant, Department of Mechanical Engineering, Solid Mechanics
Klit, P., Project Participant, Department of Mechanical Engineering, Solid Mechanics
Vølund, A., Project Participant
11/09/2017 → …
Project: Research

Investigation of Different Piston Ring Curvatures on Lubricant Transport along Cylinder Liner in Large Two-Stroke Marine Diesel Engines
Overgaard, H. T., Project Participant, Department of Mechanical Engineering, Solid Mechanics
Klit, P., Main Supervisor, Department of Mechanical Engineering, Solid Mechanics
Vølund, A., Supervisor
01/01/2016 → 30/09/2016
Project: Research

Measurement of lubricant film thicknesses by laser induced fluorescence
Overgaard, H. T., Project Participant, Department of Mechanical Engineering, Solid Mechanics
Klit, P., Main Supervisor, Department of Mechanical Engineering, Solid Mechanics
Vølund, A., Supervisor
01/03/2017 → …
Project: Research

Statiske og dynamiske egenskaber af hydrodynamiske glidelejer på vindmøllers hovedaksel
Thomsen, K., PhD Student, Department of Mechanical Engineering
Klit, P., Main Supervisor
Santos, I., Supervisor
Vølund, A., Supervisor
Pedersen, N. L., Examiner
Glavatskikh, S., Examiner
Lehtovaara, A., Examiner
ErhvervsPhD-ordningen VTU
01/04/2009 → 28/09/2012
Award relations: Statiske og dynamiske egenskaber af hydrodynamiske glidelejer på vindmøllers hovedaksel
Project: PhD
Smøring af stempelringe i store 2- og 4-takts dieselmotorer
Felter, C. L., PhD Student, Department of Mechanical Engineering
Klit, P., Main Supervisor
Vølund, A., Supervisor
Thomsen, P. G., Examiner
Eilts, P., Examiner
Fillon, M., Examiner
ErhvervsPhD-ordningen VTU
01/01/2004 → 31/08/2007
Award relations: Smøring af stempelringe i store 2- og 4-takts dieselmotorer
Project: PhD

Diesel Engine Tribology
Overgaard, H. T., PhD Student, Department of Mechanical Engineering
Klit, P., Main Supervisor
Vølund, A., Supervisor
Andreasen, C. S., Examiner
Priest, M., Examiner
Lehtovaara, A., Examiner
Samfinansieret - Andet
01/09/2015 → 10/01/2019
Award relations: Diesel Engine Tribology
Project: PhD

Numerical Simulation of the Hydrodynamic Behaviour of the Lubricant Oil Film in Large Two-stoke Marine Diesel Engines
Karvounis, N., PhD Student, Department of Mechanical Engineering
Walther, J. H., Main Supervisor
Vølund, A., Supervisor
Rokni, M. M., Examiner
Chungen, Y., Examiner
La Rocca, A., Examiner
01/06/2015 → 31/10/2018
Project: PhD

Minimering af friktionstab i 2-takt skibsdielsemotor
Vølund, A., PhD Student, Department of Mechanical Engineering
Klit, P., Main Supervisor
Jacobson, B. O., Supervisor
Knudsen, T., Supervisor
Frêné, J., Examiner
Wachtmeister, G., Examiner
Grisen, G., Examiner
Innovationsfonden
01/04/1999 → 17/02/2003
Award relations: Minimering af friktionstab i 2-takt skibsdielsemotor
Project: PhD

Lubricant Transport across the Piston Ring with Flat and Triangular Lubrication Injection Profiles on the Liner in Large Two-Stroke Marine Diesel Engines.
Overgaard, H. T., Project Participant, Department of Mechanical Engineering, Solid Mechanics
Klit, P., Main Supervisor, Department of Mechanical Engineering, Solid Mechanics
Vølund, A., Supervisor
02/05/2016 → 07/06/2017
Project: Research