Anders Nysteen - DTU Orbit (22/05/2019)
Anders Nysteen

Research outputs:

Limitations of two-level emitters as nonlinearities in two-photon controlled-PHASE gates
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review

Few-photon Non-linearities in Nanophotonic Devices for Quantum Information Technology

Scattering of two photons on a quantum emitter in a one-dimensional waveguide: exact dynamics and induced correlations
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review

Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review

Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review

Proposed Quenching of Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole Asymmetries
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review

Non-Markovian phonon dephasing of a quantum dot in a photonic-crystal nanocavity
Research output: Chapter in Book/Report/Conference proceeding › Conference abstract in proceedings – Annual report year: 2012 › Research › peer-review

Reducing dephasing in coupled quantum dot-cavity systems by engineering the carrier wavefunctions
Research output: Contribution to journal › Conference article – Annual report year: 2012 › Research › peer-review

Suppressing electron-phonon interactions in semiconductor quantum dot systems by engineering the electronic wavefunctions
Research output: Chapter in Book/Report/Conference proceeding › Conference abstract in proceedings – Annual report year: 2012 › Research › peer-review

Projects:

Nanophotonic devices for quantum information technology
Project: PhD